130 research outputs found

    The P2X7 Receptor 489C>T Gain of Function Polymorphism Favors HHV-6A Infection and Associates With Female Idiopathic Infertility

    Get PDF
    The P2X7 receptor (P2X7R) is an ATP-gated ion channel known for its proinflammatory activity. Despite its participation in host defense against pathogens, the role played in viral infections, notably those caused by herpes viruses, has been seldom studied. Here we investigated the effect of P2X7R expression on human herpes virus 6 A (HHV-6A) infection of P2X7R-expressing HEK293 cells. We show that functional P2X7R increases while its blockade decreases viral load. Interestingly, HHV-6A infection was enhanced in HEK293 cells transfected with P2X7R cDNA bearing the gain of function 489C>T SNP (rs208294, replacing a histidine for tyrosine at position 155). The P2X7R 489C>T polymorphism correlated with HHV-6A infection also in a cohort of 50 women affected with idiopathic infertility, a condition previously shown to correlate with HHV-6A infection. None of the infertile women infected by HHV-6A was homozygote for 489CC genotype, while on the contrary HHV-6A infection significantly associated with the presence of the rs208294 allele. Levels of soluble human leukocyte antigen G (sHLA-G), a factor promoting embryo implant, measured in uterine flushings negatively correlated with the 489TT genotype and HHV-6A infection, while proinflammatory cytokines interleukins 1α (IL-1α), 1β (IL-1β), and 8 (IL-8) positively correlated with both the 489T allele presence and viral infection. Taken together these data point to the P2X7R as a new therapeutic target to prevent HHV-6A infection and the associated infertility

    Age and synchronicity of planktonic foraminiferal bioevents across the Cenomanian – Turonian boundary interval (Late Cretaceous)

    Get PDF
    The upper Cenomanian – lower Turonian is a key-stratigraphic interval, as it encompasses the Late Cretaceous supergreenhouse and a major perturbation of the global carbon cycle (i. e., Oceanic Anoxic Event 2) as evidenced by a global positive carbon isotope excursion and by the nearly world-wide deposition of organic-rich marine facies. A turnover in planktonic foraminiferal assemblages and in other marine organisms is documented across this stratigraphic interval, but reconstruction of the timing and identification of the cause and effect relationships between environmental perturbations and organism response require a highly-resolved stratigraphic framework. The appearance and extinction levels of planktonic foraminiferal species generally allow accurate intra- and supra-basinal correlations. However, bioevents cannot be assumed to be globally synchronous, because the stratigraphic and geographic distribution of species is modulated by ecological preferences exhibited by each taxon and controlled by oceanic circulation, often resulting in earlier or delayed events in certain geographic areas (i. e., diachronous datums). The aim of this study is to test the synchronicity of the planktonic foraminiferal bioevents recognized across the C/T boundary and to provide the most reliable sequence of events for correlation of low to mid-latitude localities. For this purpose, we have compiled a highly-resolved biostratigraphic analysis of the European reference section for the C/T boundary at Eastbourne, Gun Gardens (UK), and core S57 (Tarfaya, Morocco), and correlated the sequence of bioevents identified with those recorded in other coeval sections available in the literature, including the GSSP section for the base of the Turonian Stage at Rock Canyon, Pueblo (Colorado), where we calculated reliable estimates of planktonic foraminiferal events that are well-constrained by radioisotopically and astrochronologically dated bentonite layers. Results indicate that the extinctions of Thalmanninella deeckei, Thalmanninella greenhornensis, Rotalipora cushmani and "Globigerinelloides" bentonensis in the latest Cenomanian are reliable bioevents for correlation. In addition, our analysis highlights other promising lowest occurrences (LOs) that need to be better constrained by bio- and chemostratigraphy, including the LO of Marginotruncana schneegansi falling close to the C/T boundary. By contrast, the appearance of Helvetoglobotruncana helvetica and of some Dicarinella species, the extinction of anaticinellids and the onset of the "Heterohelix" shift are likely diachronous across low to mid-latitude localities. Finally, our study suggests that different species concepts among authors, different sample size and sampling resolution, as well as species paleoecology are important factors that control the stratigraphic position at which bioevents are identified

    Analysis of the humoral and cellular immune response after a full course of BNT162b2 anti-SARS-CoV-2 vaccine in cancer patients treated with PD-1/PD-L1 inhibitors with or without chemotherapy: an update after 6 months of follow-up

    Get PDF
    Background: The durability of immunogenicity of SARS-CoV-2 vaccination in cancer patients remains to be elucidated. We prospectively evaluated the immunogenicity of the vaccine in triggering both the humoral and the cell-mediated immune response in cancer patients treated with anti-programmed cell death protein 1/programmed death-ligand 1 with or without chemotherapy 6 months after BNT162b2 vaccine. Patients and methods: In the previous study, 88 patients were enrolled, whereas the analyses below refer to the 60 patients still on immunotherapy at the time of the follow-up. According to previous SARS-CoV-2 exposure, patients were classified as SARS-CoV-2-naive (without previous SARS-CoV-2 exposure) and SARS-CoV-2-experienced (with previous SARS-CoV-2 infection). Neutralizing antibody (NT Ab) titer against the B.1.1 strain and total anti-spike immunoglobulin G concentration were quantified in serum samples. The enzyme-linked immunosorbent spot assay was used for quantification of anti-spike interferon-γ (IFN-γ)-producing cells/106 peripheral blood mononuclear cells. Fifty patients (83.0%) were on immunotherapy alone, whereas 10 patients (7%) were on chemo-immunotherapy. We analyzed separately patients on immunotherapy and patients on chemo-immunotherapy. Results: The median T-cell response at 6 months was significantly lower than that measured at 3 weeks after vaccination [50 interquartile range (IQR) 20-118.8 versus 175 IQR 67.5-371.3 IFN-γ-producing cells/106 peripheral blood mononuclear cells; P < 0.0001]. The median reduction of immunoglobulin G concentration was 88% in SARS-CoV-2-naive subjects and 2.1% in SARS-CoV-2-experienced subjects. SARS-CoV-2 NT Ab titer was maintained in SARS-CoV-2-experienced subjects, whereas a significant decrease was observed in SARS-CoV-2-naive subjects (from median 1 : 160, IQR 1 : 40-1 : 640 to median 1 : 20, IQR 1 : 10-1 : 40; P < 0.0001). A weak correlation was observed between SARS-CoV-2 NT Ab titer and spike-specific IFN-γ-producing cells at both 6 months and 3 weeks after vaccination (r = 0.467; P = 0.0002 and r = 0.428; P = 0.0006, respectively). Conclusions: Our work highlights a reduction in the immune response in cancer patients, particularly in SARS-CoV-2-naive subjects. Our data support administering a third dose of COVID-19 vaccine to cancer patients treated with programmed cell death protein 1/programmed death-ligand 1 inhibitors

    Assessment of the proliferative, apoptotic and cellular renovation indices of the human mammary epithelium during the follicular and luteal phases of the menstrual cycle

    Get PDF
    Introduction During the menstrual cycle, the mammary gland goes through sequential waves of proliferation and apoptosis. in mammary epithelial cells, hormonal and non-hormonal factors regulate apoptosis. To determine the cyclical effects of gonadal steroids on breast homeostasis, we evaluated the apoptotic index ( AI) determined by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling ( TUNEL) staining in human mammary epithelial cells during the spontaneous menstrual cycle and correlated it with cellular proliferation as determined by the expression of Ki-67 during the same period.Methods Normal breast tissue samples were obtained from 42 randomly selected patients in the proliferative ( n = 21) and luteal ( n = 21) phases. Menstrual cycle phase characterization was based on the date of the last and subsequent menses, and on progesterone serum levels obtained at the time of biopsy.Results the proliferation index ( PI), defined as the number of Ki-67-positive nuclei per 1,000 epithelial cells, was significantly larger in the luteal phase (30.46) than in the follicular phase (13.45; P = 0.0033). the AI was defined as the number of TUNEL-positive cells per 1,000 epithelial cells. the average AI values in both phases of the menstrual cycle were not statistically significant ( P = 0.21). However, the cell renewal index ( CRI = PI/AI) was significantly higher in the luteal phase ( P = 0.033). A significant cyclical variation of PI, AI and CRI was observed. PI and AI peaks occurred on about the 24th day of the menstrual cycle, whereas the CRI reached higher values on the 28th day.Conclusions We conclude that proliferative activity is dependent mainly on hormonal fluctuations, whereas apoptotic activity is probably regulated by hormonal and non-hormonal factors.Universidade Federal de São Paulo, Dept Gyneol, Mastol Div, São Paulo, BrazilStanford Univ, Sch Med, Dept Neurosurg, Stanford, CA 94305 USAAPC Pathol, São Paulo, BrazilUniversidade Federal de São Paulo, Dept Gyneol, Mastol Div, São Paulo, BrazilWeb of Scienc

    The role of P2 receptors in controlling infections by intracellular pathogens

    Get PDF
    A growing number of studies have demonstrated the importance of ATPe-signalling via P2 receptors as an important component of the inflammatory response to infection. More recent studies have shown that ATPe can also have a direct effect on infection by intracellular pathogens, by modulating membrane trafficking in cells that contain vacuoles that harbour intracellular pathogens, such as mycobacteria and chlamydiae. A conserved mechanism appears to be involved in controlling infection by both of these pathogens, as a role for phospholipase D in inducing fusion between lysosomes and the vacuoles has been demonstrated. Other P2-dependent mechanisms are most likely operative in the cases of pathogens, such as Leishmania, which survive in an acidic phagolysosomal-like compartment. ATPe may function as a ‘danger signal–that alerts the immune system to the presence of intracellular pathogens that damage the host cell, while different intracellular pathogens have evolved enzymes or other mechanisms to inhibit ATPe-mediated signalling, which should, thus, be viewed as virulence factors for these pathogens

    Generation of Novel Bone Forming Cells (Monoosteophils) from the Cathelicidin-Derived Peptide LL-37 Treated Monocytes

    Get PDF
    Bone generation and maintenance involve osteoblasts, osteoclasts, and osteocytes which originate from unique precursors and rely on key growth factors for differentiation. However, an incomplete understanding of bone forming cells during wound healing has led to an unfilled clinical need such as nonunion of bone fractures. Since circulating monocytes are often recruited to sites of injury and may differentiate into various cell types including osteoclasts, we investigated the possibility that circulating monocytes in the context of tissue injury may also contribute to bone repair. In particular, we hypothesized that LL-37 (produced from hCAP-18, cathelicidin), which recruits circulating monocytes during injury, may play a role in bone repair.Treatment of monocytes from blood with LL-37 for 6 days resulted in their differentiation to large adherent cells. Growth of LL-37-differentiated monocytes on osteologic discs reveals bone-like nodule formation by scanning electron microscopy (SEM). In vivo transplantation studies in NOD/SCID mice show that LL-37-differentiated monocytes form bone-like structures similar to endochondral bone formation. Importantly, LL-37-differentiated monocytes are distinct from conventional monocyte-derived osteoclasts, macrophages, and dendritic cells and do not express markers of the mesenchymal stem cells (MSC) lineage, distinguishing them from the conventional precursors of osteoblasts. Furthermore, LL-37 differentiated monocytes express intracellular proteins of both the osteoblast and osteoclast lineage including osteocalcin (OC), osteonectin (ON), bone sialoprotein II (BSP II), osteopontin (OP), RANK, RANKL, MMP-9, tartrate resistant acid phosphatase (TRAP), and cathepsin K (CK).Blood derived monocytes treated with LL-37 can be differentiated into a novel bone forming cell that functions both in vitro and in vivo. We propose the name monoosteophil to indicate their monocyte derived lineage and their bone forming phenotype. These cells may have wide ranging implications in the clinic including repair of broken bones and treatment of osteoporosis
    • …
    corecore