773 research outputs found

    Gauge Dependence of the Effective Average Action in Einstein Gravity

    Get PDF
    We study the gauge dependence of the effective average action Gamma_k and Newtonian gravitational constant using the RG equation for Gamma_k. Then we truncate the space of action functionals to get a solution of this equation. We solve the truncated evolution equation for the Einstein gravity in the De Sitter background for a general gauge parameter alpha and obtain a system of equations for the cosmological and the Newtonian constants. Analyzing the running of the gravitational constant we find that the Newtonian constant depends strongly on the gauge parameter. This leads to the appearance of antiscreening and screening behavior of the quantum gravity. The resolution of the gauge dependence problem is suggested. For physical gauges like the Landau-De Witt gauge the Newtonian constant shows an antiscreening.Comment: 19 pages, LaTeX, 1 figure, misprints correcte

    The role of aerodynamic drag in propagation of interplanetary coronal mass ejections

    Get PDF
    Context. The propagation of interplanetary coronal mass ejections (ICMEs) and the forecast of their arrival on Earth is one of the central issues of space weather studies. Aims. We investigate to which degree various ICME parameters (mass, size, take-off speed) and the ambient solar-wind parameters (density and velocity) affect the ICME Sun-Earth transit time. Methods. We study solutions of a drag-based equation of motion by systematically varying the input parameters. The analysis is focused on ICME transit times and 1 AU velocities. Results. The model results reveal that wide ICMEs of low masses adjust to the solar-wind speed already close to the sun, so the transit time is determined primarily by the solar-wind speed. The shortest transit times and accordingly the highest 1 AU velocities are related to narrow and massive ICMEs (i.e. high-density eruptions) propagating in high-speed solar wind streams. We apply the model to the Sun-Earth event associated with the CME of 25 July 2004 and compare the results with the outcome of the numerical MHD modeling

    EPICS: Children\u27s Educational Demonstrations

    Get PDF

    Ocean acidification and human health

    Get PDF
    The ocean provides resources key to human health and well-being, including food, oxygen, livelihoods, blue spaces, and medicines. The global threat to these resources posed by accelerating ocean acidification is becoming increasingly evident as the world’s oceans absorb carbon dioxide emissions. While ocean acidification was initially perceived as a threat only to the marine realm, here we argue that it is also an emerging human health issue. Specifically, we explore how ocean acidification affects the quantity and quality of resources key to human health and well-being in the context of: (1) malnutrition and poisoning, (2) respiratory issues, (3) mental health impacts, and (4) development of medical resources. We explore mitigation and adaptation management strategies that can be implemented to strengthen the capacity of acidifying oceans to continue providing human health benefits. Importantly, we emphasize that the cost of such actions will be dependent upon the socioeconomic context; specifically, costs will likely be greater for socioeconomically disadvantaged populations, exacerbating the current inequitable distribution of environmental and human health challenges. Given the scale of ocean acidification impacts on human health and well-being, recognizing and researching these complexities may allow the adaptation of management such that not only are the harms to human health reduced but the benefits enhanced.publishedVersio

    In vitro method to evaluate virus competition between BVDV-1 and BVDV-2 strains using the PrimeFlow RNA assay

    Get PDF
    Bovine viral diarrhea viruses (BVDV), segregated in BVDV-1 and BVDV-2 species, lead to substantial economic losses to the cattle industry worldwide. It has been hypothesized that there could be differences in level of replication, pathogenesis and tissue tropism between BVDV-1 and BVDV-2 strains. Thus, this study developed an in vitro method to evaluate virus competition between BVDV-1 and BVDV-2 strains. To this end the competitive dynamics of BVDV-1a, BVDV-1b, and BVDV-2a strains in cell cultures was evaluated by a PrimeFlow RNA assay. Similar results were observed in this study, as was observed in an earlier in vivo transmission study. Competitive exclusion was observed as the BVDV-2a strains dominated and excluded the BVDV-1a and BVDV-1b strains. The in vitro model developed can be used to identify viral variations that result in differences in frequency of subgenotypes detected in the field, vaccine failure, pathogenesis, and strain dependent variation in immune responses

    Multivariate analysis reveals that BVDV field isolates do not show a close VN-based antigenic relationship to US vaccine strains

    Get PDF
    Objective Evaluate bovine viral diarrhea virus (BVDV) antigenicity by using virus neutralization titers (VNT) analyzed using the principal component analysis (PCA) from antisera generated against US-based vaccine strains against both US-origin field isolates and non-US-origin field isolates. Results Data from both independent analyses demonstrated that several US-origin and non-US-origin BVDV field isolates appear to be antigenically divergent from the US-based vaccine strains. Results from the combined analysis provided greater insight into the antigenic diversity observed among BVDV isolates. Data from this study further support genetic assignment into BVDV subgenotypes, as well as strains within subgenotypes is not representative of antigenic relatedness. PCA highlights isolates that are antigenically divergent from members of the same species and subgenotype and conversely isolates that belong to different subgenotypes have similar antigenic characteristics when using antisera from US-based vaccine isolates

    Effective Average Action in N=1 Super-Yang-Mills Theory

    Full text link
    For N=1 Super-Yang-Mills theory we generalize the effective average action Gamma_k in a manifest supersymmetric way using the superspace formalism. The exact evolution equation for Gamma_k is derived and, introducing as an application a simple truncation, the standard one-loop beta-function of N=1 SYM theory is obtained.Comment: 17 pages, LaTeX, some remarks added, misprints corrected, to appear in Phys. Rev.

    Is Quantum Einstein Gravity Nonperturbatively Renormalizable?

    Get PDF
    We find considerable evidence supporting the conjecture that four-dimensional Quantum Einstein Gravity is ``asymptotically safe'' in Weinberg's sense. This would mean that the theory is likely to be nonperturbatively renormalizable and thus could be considered a fundamental (rather than merely effective) theory which is mathematically consistent and predictive down to arbitrarily small length scales. For a truncated version of the exact flow equation of the effective average action we establish the existence of a non-Gaussian renormalization group fixed point which is suitable for the construction of a nonperturbative infinite cutoff-limit. The truncation ansatz includes the Einstein-Hilbert action and a higher derivative term.Comment: 18 pages, latex, 3 figure
    • …
    corecore