83 research outputs found
Spin injection through the depletion layer: a theory of spin-polarized p-n junctions and solar cells
A drift-diffusion model for spin-charge transport in spin-polarized {\it p-n}
junctions is developed and solved numerically for a realistic set of material
parameters based on GaAs. It is demonstrated that spin polarization can be
injected through the depletion layer by both minority and majority carriers,
making all-semiconductor devices such as spin-polarized solar cells and bipolar
transistors feasible. Spin-polarized {\it p-n} junctions allow for
spin-polarized current generation, spin amplification, voltage control of spin
polarization, and a significant extension of spin diffusion range.Comment: 4 pages, 3 figure
Spin-polarized current amplification and spin injection in magnetic bipolar transistors
The magnetic bipolar transistor (MBT) is a bipolar junction transistor with
an equilibrium and nonequilibrium spin (magnetization) in the emitter, base, or
collector. The low-injection theory of spin-polarized transport through MBTs
and of a more general case of an array of magnetic {\it p-n} junctions is
developed and illustrated on several important cases. Two main physical
phenomena are discussed: electrical spin injection and spin control of current
amplification (magnetoamplification). It is shown that a source spin can be
injected from the emitter to the collector. If the base of an MBT has an
equilibrium magnetization, the spin can be injected from the base to the
collector by intrinsic spin injection. The resulting spin accumulation in the
collector is proportional to , where is the proton
charge, is the bias in the emitter-base junction, and is the
thermal energy. To control the electrical current through MBTs both the
equilibrium and the nonequilibrium spin can be employed. The equilibrium spin
controls the magnitude of the equilibrium electron and hole densities, thereby
controlling the currents. Increasing the equilibrium spin polarization of the
base (emitter) increases (decreases) the current amplification. If there is a
nonequilibrium spin in the emitter, and the base or the emitter has an
equilibrium spin, a spin-valve effect can lead to a giant magnetoamplification
effect, where the current amplifications for the parallel and antiparallel
orientations of the the equilibrium and nonequilibrium spins differ
significantly. The theory is elucidated using qualitative analyses and is
illustrated on an MBT example with generic materials parameters.Comment: 14 PRB-style pages, 10 figure
Theory of spin-polarized bipolar transport in magnetic p-n junctions
The interplay between spin and charge transport in electrically and
magnetically inhomogeneous semiconductor systems is investigated theoretically.
In particular, the theory of spin-polarized bipolar transport in magnetic p-n
junctions is formulated, generalizing the classic Shockley model. The theory
assumes that in the depletion layer the nonequilibrium chemical potentials of
spin up and spin down carriers are constant and carrier recombination and spin
relaxation are inhibited. Under the general conditions of an applied bias and
externally injected (source) spin, the model formulates analytically carrier
and spin transport in magnetic p-n junctions at low bias. The evaluation of the
carrier and spin densities at the depletion layer establishes the necessary
boundary conditions for solving the diffusive transport equations in the bulk
regions separately, thus greatly simplifying the problem. The carrier and spin
density and current profiles in the bulk regions are calculated and the I-V
characteristics of the junction are obtained. It is demonstrated that spin
injection through the depletion layer of a magnetic p-n junction is not
possible unless nonequilibrium spin accumulates in the bulk regions--either by
external spin injection or by the application of a large bias. Implications of
the theory for majority spin injection across the depletion layer, minority
spin pumping and spin amplification, giant magnetoresistance, spin-voltaic
effect, biasing electrode spin injection, and magnetic drift in the bulk
regions are discussed in details, and illustrated using the example of a GaAs
based magnetic p-n junction.Comment: 36 pages, 11 figures, 2 table
Elastic electron deuteron scattering with consistent meson exchange and relativistic contributions of leading order
The influence of relativistic contributions to elastic electron deuteron
scattering is studied systematically at low and intermediate momentum transfers
( fm). In a -expansion, all leading order
relativistic -exchange contributions consistent with the Bonn OBEPQ models
are included. In addition, static heavy meson exchange currents including boost
terms and lowest order -currents are considered. Sizeable
effects from the various relativistic two-body contributions, mainly from
-exchange, have been found in form factors, structure functions and the
tensor polarization . Furthermore, static properties, viz. magnetic
dipole and charge quadrupole moments and the mean square charge radius are
evaluated.Comment: 15 pages Latex including 5 figures, final version accepted for
publication in Phys.Rev.C Details of changes: (i) The notation of the curves
in Figs. 1 and 2 have been clarified with respect to left and right panels.
(ii) In Figs. 3 and 4 an experimental point for T_20 has been added and a
corresponding reference [48] (iii) At the end of the text we have added a
paragraph concerning the quality of the Bonn OBEPQ potential
First steps towards deriving rock magnetic and paleomagnetic data from subsets of magnetic grains in lavas using Micromagnetic Tomography
Our understanding of the behavior of the geomagnetic field arises from magnetic signals stored in geological materials, e.g. lavas. Almost all experiments to determine the past state of the Earth's magnetic field use bulk samples (typically 1 - 10 cc) and measure their magnetic moment after series of laboratory treatments. Lavas, however, consist of mixtures of different iron-oxide grains that vary in size, shape, and chemistry. Some of these grains are good recorders of the Earth's magnetic field; others are not. Only a small amount of adverse behaved magnetic grains in a sample already hampers all classical experiments to obtain paleointensities; success rates as low as 10-20% are common, i.e. for 80-90% of all lavas vital information on paleointensities is lost before it can be uncovered.Recently, we showed that it is possible to determine the magnetization of individual grains inside a synthetic sample using a new technique: Micromagnetic Tomography. The individual magnetizations of grains are determined by inverting scanning magnetometry data from the surface on the sample onto the known locations, sizes and shapes of the magnetic grains that are obtained from a microCT scan of the sample. The synthetic sample used for our proof-of-concept, however, was optimized for success: the dispersion of magnetic markers was low, and the magnetite grains had a well-defined grain size range. Furthermore, the scanning SQUID microscope used requires the sample to be at 4 K, below the Verweij transition of the magnetite grains.Here we present the first Micromagnetic Tomography results from natural samples. We used two magnetic scanning techniques that operate at room temperature, a Magnetic Tunneling Junction set-up and a Quantum Diamond Magnetometer, to acquire the magnetic surface scans from a Hawaiian lava and calculated magnetic moments of individual grains present. We show that it is possible to acquire rock magnetic information as function of grain size from these natural samples and reveal the first results of interpreting a paleomagnetic direction from selected subsets of grains in our samples. These are the first steps towards deriving rock magnetic and paleomagnetic information from subsets of known good recorders inside lava samples, a technique that will re
Micromagnetic Tomography for paleomagnetism and rock-magnetism
Our understanding of the past behavior of the geomagnetic field arises from magnetic signals stored in geological materials, e.g. (volcanic) rocks. Bulk rock samples, however, often contain magnetic grains that differ in chemistry, size and shape; some of them record the Earth’s magnetic field well, others are unreliable. The presence of a small amount of adverse behaved magnetic grains in a sample may already obscure important information on the past state of the geomagnetic field. Recently it was shown that it is possible to determine magnetizations of individual grains in a sample by combining X-ray computed tomography and magnetic surface scanning measurements. Here we establish this new Micromagnetic Tomography (MMT) technique and make it suitable for use with different magnetic scanning techniques, and for both synthetic and natural samples. We acquired reliable magnetic directions by selecting subsets of grains in a synthetic sample, and we obtained rock-magnetic information of individual grains in a volcanic sample. This illustrates that MMT opens up entirely new venues of paleomagnetic and rock-magnetic research. MMT’s unique ability to determine the magnetization of individual grains in a nondestructive way allows for a systematic analysis of how geological materials record and retain information on the past state of the Earth’s magnetic field. Moreover, by interpreting only the contributions of known magnetically well-behaved grains in a sample MMT has the potential to unlock paleomagnetic i
Removing critical gaps in chemical test methods by developing new assays for the identification of thyroid hormone system-disrupting chemicals—the athena project
The test methods that currently exist for the identification of thyroid hormone system-disrupting chemicals are woefully inadequate. There are currently no internationally validated in vitro assays, and test methods that can capture the consequences of diminished or enhanced thyroid hormone action on the developing brain are missing entirely. These gaps put the public at risk and risk assessors in a difficult position. Decisions about the status of chemicals as thyroid hormone system disruptors currently are based on inadequate toxicity data. The ATHENA project (Assays for the identification of Thyroid Hormone axis-disrupting chemicals: Elaborating Novel Assessment strategies) has been conceived to address these gaps. The project will develop new test methods for the disruption of thyroid hormone transport across biological barriers such as the blood–brain and blood–placenta barriers. It will also devise methods for the disruption of the downstream effects on the brain. ATHENA will deliver a testing strategy based on those elements of the thyroid hormone system that, when disrupted, could have the greatest impact on diminished or enhanced thyroid hormone action and therefore should be targeted through effective testing. To further enhance the impact of the ATHENA test method developments, the project will develop concepts for better international collaboration and development in the area of thyroid hormone system disruptor identification and regulation
Long-term outcome of patients with newly diagnosed chronic myeloid leukemia: a randomized comparison of stem cell transplantation with drug treatment.
Tyrosine kinase inhibitors represent today's treatment of choice in chronic myeloid leukemia (CML). Allogeneic hematopoietic stem cell transplantation (HSCT) is regarded as salvage therapy. This prospective randomized CML-study IIIA recruited 669 patients with newly diagnosed CML between July 1997 and January 2004 from 143 centers. Of these, 427 patients were considered eligible for HSCT and were randomized by availability of a matched family donor between primary HSCT (group A; N=166 patients) and best available drug treatment (group B; N=261). Primary end point was long-term survival. Survival probabilities were not different between groups A and B (10-year survival: 0.76 (95% confidence interval (CI): 0.69-0.82) vs 0.69 (95% CI: 0.61-0.76)), but influenced by disease and transplant risk. Patients with a low transplant risk showed superior survival compared with patients with high- (P<0.001) and non-high-risk disease (P=0.047) in group B; after entering blast crisis, survival was not different with or without HSCT. Significantly more patients in group A were in molecular remission (56% vs 39%; P=0.005) and free of drug treatment (56% vs 6%; P<0.001). Differences in symptoms and Karnofsky score were not significant. In the era of tyrosine kinase inhibitors, HSCT remains a valid option when both disease and transplant risk are considered
Recommended from our members
Energetic particle influence on the Earth's atmosphere
This manuscript gives an up-to-date and comprehensive overview of the effects of energetic particle precipitation (EPP) onto the whole atmosphere, from the lower thermosphere/mesosphere through the stratosphere and troposphere, to the surface. The paper summarizes the different sources and energies of particles, principally
galactic cosmic rays (GCRs), solar energetic particles (SEPs) and energetic electron precipitation (EEP). All the proposed mechanisms by which EPP can affect the atmosphere
are discussed, including chemical changes in the upper atmosphere and lower thermosphere, chemistry-dynamics feedbacks, the global electric circuit and cloud formation. The role of energetic particles in Earth’s atmosphere is a multi-disciplinary problem that requires expertise from a range of scientific backgrounds. To assist with this synergy, summary tables are provided, which are intended to evaluate the level of current knowledge of the effects of energetic particles on processes in the entire atmosphere
Quasi-periodic x-ray eruptions years after a nearby tidal disruption event
Quasi-periodic eruptions (QPEs) are luminous bursts of soft X-rays from the nuclei of galaxies, repeating on timescales of hours to weeks. The mechanism behind these rare systems is uncertain, but most theories involve accretion disks around supermassive black holes (SMBHs) undergoing instabilities or interacting with a stellar object in a close orbit. It has been suggested that this disk could be created when the SMBH disrupts a passing star implying that many QPEs should be preceded by observable tidal disruption events (TDEs). Two known QPE sources show long-term decays in quiescent luminosity consistent with TDEs and two observed TDEs have exhibited X-ray flares consistent with individual eruptions . TDEs and QPEs also occur preferentially in similar galaxies. However, no confirmed repeating QPEs have been associated with a spectroscopically confirmed TDE or an optical TDE observed at peak brightness. Here we report the detection of nine X-ray QPEs with a mean recurrence time of approximately 48 h from AT2019qiz, a nearby and extensively studied optically selected TDE16. We detect and model the X-ray, ultraviolet (UV) and optical emission from the accretion disk and show that an orbiting body colliding with this disk provides a plausible explanation for the QPEs
- …