12 research outputs found

    Oncogenic K-Ras upregulates ITGA6 expression via FOSL1 to induce anoikis resistance and synergizes with αV-Class integrins to promote EMT

    Get PDF
    Abstract In many cancer types, integrin-mediated signaling regulates proliferation, survival and invasion of tumorigenic cells. However, it is still unclear how integrins crosstalk with oncogenes to regulate tumorigenesis and metastasis. Here we show that oncogenic K-RasV12 upregulates α6-integrin expression in Madin–Darby canine kidney (MDCK) cells via activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK)/Fos-related antigen 1-signaling cascade. Activated α6-integrins promoted metastatic capacity and anoikis resistance, and led to perturbed growth of MDCK cysts. Transcriptomic analysis of K-RasV12-transformed MDCK cells also revealed robust downregulation of αV-class integrins. Re-expression of αV-integrin in K-RasV12-transformed MDCK cells synergistically upregulated the expression of Zinc finger E-box-binding homeobox 1 and Twist-related protein 1 and triggered epithelial-mesenchymal transition leading to induced cell motility and invasion. These results delineate the signaling cascades connecting oncogenic K-RasV12 with α6- and αV-integrin functions to modulate cancer cell survival and tumorigenesis, and reveal new possible strategies to target highly oncogenic K-RasV12 mutants

    Enhanced Expression of Integrin αvβ3 Induced by TGF-β Is Required for the Enhancing Effect of Fibroblast Growth Factor 1 (FGF1) in TGF-β-Induced Epithelial-Mesenchymal Transition (EMT) in Mammary Epithelial Cells

    Get PDF
    Epithelial-to-mesenchymal transition (EMT) plays a critical role in cancer metastasis, and is regulated by growth factors such as transforming growth factor β (TGF-β) and fibroblast growth factors (FGF) secreted from the stromal and tumor cells. However, the role of growth factors in EMT has not been fully established. Several integrins are upregulated by TGF-β1 during EMT. Integrins are involved in growth factor signaling through integrin-growth factor receptor crosstalk. We previously reported that FGF1 directly binds to integrin αvβ3 and the interaction was required for FGF1 functions such as cell proliferation and migration. We studied the role of αvβ3 induced by TGF-β on TGF-β-induced EMT. Here, we describe that FGF1 augmented EMT induced by TGF-β1 in MCF10A and MCF12A mammary epithelial cells. TGF-β1 markedly amplified integrin αvβ3 and FGFR1 (but not FGFR2). We studied if the enhancing effect of FGF1 on TGF-β1-induced EMT requires enhanced levels of both integrin αvβ3 expression and FGFR1. Knockdown of β3 suppressed the enhancement by FGF1 of TGF-β1-induced EMT in MCF10A cells. Antagonists to FGFR suppressed the enhancing effect of FGF1 on EMT. Integrin-binding defective FGF1 mutant did not augment TGF-β1-induced EMT in MCF10A cells. These findings suggest that enhanced integrin αvβ3 expression in addition to enhanced FGFR1 expression is critical for FGF1 to augment TGF-β1-induced EMT in mammary epithelial cells
    corecore