14 research outputs found
Estimating black hole masses of blazars
Estimating black hole masses of blazars is still a big challenge. Because of
the contamination of jets, using the previously suggested size -- continuum
luminosity relation can overestimate the broad line region (BLR) size and black
hole mass for radio-loud AGNs, including blazars. We propose a new relation
between the BLR size and emission line luminosity and present
evidences for using it to get more accurate black hole masses of radio-loud
AGNs. For extremely radio-loud AGNs such as blazars with weak/absent emission
lines, we suggest to use the fundamental plane relation of their elliptical
host galaxies to estimate the central velocity dispersions and black hole
masses, if their velocity dispersions are not known but the host galaxies can
be mapped. The black hole masses of some well-known blazars, such as OJ 287, AO
0235+164 and 3C 66B, are obtained using these two methods and the M -
relation. The implications of their black hole masses on other related studies
are also discussed.Comment: 7 pages, invited talk presented in the workshop on Multiwavelength
Variability of Blazars (Guangzhou, China, Sept. 22-24, 2010). To be published
in the Journal of Astrophysics and Astronom
Physics, Astrophysics and Cosmology with Gravitational Waves
Gravitational wave detectors are already operating at interesting sensitivity
levels, and they have an upgrade path that should result in secure detections
by 2014. We review the physics of gravitational waves, how they interact with
detectors (bars and interferometers), and how these detectors operate. We study
the most likely sources of gravitational waves and review the data analysis
methods that are used to extract their signals from detector noise. Then we
consider the consequences of gravitational wave detections and observations for
physics, astrophysics, and cosmology.Comment: 137 pages, 16 figures, Published version
<http://www.livingreviews.org/lrr-2009-2
Gravitational Waves from Gravitational Collapse
Gravitational wave emission from the gravitational collapse of massive stars
has been studied for more than three decades. Current state of the art
numerical investigations of collapse include those that use progenitors with
realistic angular momentum profiles, properly treat microphysics issues,
account for general relativity, and examine non--axisymmetric effects in three
dimensions. Such simulations predict that gravitational waves from various
phenomena associated with gravitational collapse could be detectable with
advanced ground--based and future space--based interferometric observatories.Comment: 68 pages including 13 figures; revised version accepted for
publication in Living Reviews in Relativity (http://www.livingreviews.org
Stochastic backgrounds of relic gravitons: a theoretical appraisal
Stochastic backgrounds or relic gravitons, if ever detected, will constitute
a prima facie evidence of physical processes taking place during the earliest
stages of the evolution of the plasma. The essentials of the stochastic
backgrounds of relic gravitons are hereby introduced and reviewed. The pivotal
observables customarily employed to infer the properties of the relic gravitons
are discussed both in the framework of the CDM paradigm as well as in
neighboring contexts. The complementarity between experiments measuring the
polarization of the Cosmic Microwave Background (such as, for instance, WMAP,
Capmap, Quad, Cbi, just to mention a few) and wide band interferometers (e.g.
Virgo, Ligo, Geo, Tama) is emphasized. While the analysis of the microwave sky
strongly constrains the low-frequency tail of the relic graviton spectrum,
wide-band detectors are sensitive to much higher frequencies where the spectral
energy density depends chiefly upon the (poorly known) rate of
post-inflationary expansion.Comment: 94 pages, 32 figure
Gravitational Wave Detection by Interferometry (Ground and Space)
Significant progress has been made in recent years on the development of
gravitational wave detectors. Sources such as coalescing compact binary
systems, neutron stars in low-mass X-ray binaries, stellar collapses and
pulsars are all possible candidates for detection. The most promising design of
gravitational wave detector uses test masses a long distance apart and freely
suspended as pendulums on Earth or in drag-free craft in space. The main theme
of this review is a discussion of the mechanical and optical principles used in
the various long baseline systems in operation around the world - LIGO (USA),
Virgo (Italy/France), TAMA300 and LCGT (Japan), and GEO600 (Germany/U.K.) - and
in LISA, a proposed space-borne interferometer. A review of recent science runs
from the current generation of ground-based detectors will be discussed, in
addition to highlighting the astrophysical results gained thus far. Looking to
the future, the major upgrades to LIGO (Advanced LIGO), Virgo (Advanced Virgo),
LCGT and GEO600 (GEO-HF) will be completed over the coming years, which will
create a network of detectors with significantly improved sensitivity required
to detect gravitational waves. Beyond this, the concept and design of possible
future "third generation" gravitational wave detectors, such as the Einstein
Telescope (ET), will be discussed.Comment: Published in Living Reviews in Relativit
Binary and Millisecond Pulsars
We review the main properties, demographics and applications of binary and
millisecond radio pulsars. Our knowledge of these exciting objects has greatly
increased in recent years, mainly due to successful surveys which have brought
the known pulsar population to over 1700. There are now 80 binary and
millisecond pulsars associated with the disk of our Galaxy, and a further 103
pulsars in 24 of the Galactic globular clusters. Recent highlights have been
the discovery of the first ever double pulsar system and a recent flurry of
discoveries in globular clusters, in particular Terzan 5.Comment: 77 pages, 30 figures, available on-line at
http://www.livingreviews.org/lrr-2005-