302 research outputs found
Sensitivity analysis of the parameter-efficient distributed (PED) model for discharge and sediment concentration estimation in degraded humid landscapes
Sustainable development in degraded landscapes in the humid tropics require effective soil and water management practices. Coupled hydrological‐erosion models have been used to understand and predict the underlying processes at watershed scale and the effect of human interventions. One prominent tool is the parameter‐efficient distributed (PED) model, which improves on other models by considering a saturation‐excess runoff generation driving erosion and sediment transport in humid climates. This model has been widely applied at different scales for the humid monsoonal climate of the Ethiopian Highlands, with good success in estimating discharge and sediment concentrations. However, previous studies performed manual calibration of the involved parameters without reporting sensitivity analyses or assessing equifinality. The aim of this article is to provide a multi‐objective global sensitivity analysis of the PED model using automatic random sampling implemented in the SAFE Toolbox. We find that relative parameter sensitivity depends greatly on the purpose of model application and the outcomes used for its evaluation. Five of the 13 PED model parameters are insensitive for improving model performance. Additionally, associating behavioural parameter values with a clear physical meaning provides slightly better results and helps interpretation. Lastly, good performance in one module does not translate directly into good performance in the other module. We interpret these results in terms of the represented hydrological and erosion processes and recommend field data to inform model calibration and validation, potentially improving land degradation understanding and prediction and supporting decision‐making for soil and water conservation strategies in degraded humid landscapes
Recommended from our members
Mexico City and the biogeochemistry of global urbanization
Mexico City is far advanced in its urban evolution, and cities in currently developing nations may soon follow a similar course. This paper investigates the strengths and weaknesses of infrastructures for the emerging megacities. The major driving force for infrastructure change in Mexico City is concern over air quality. Air chemistry data from recent field campaigns have been used to calculate fluxes in the atmosphere of the Valley of Mexico, for compounds that are important to biogeochemistry including methane (CH4), carbon monoxide (CO), nonmethane hydrocarbons (NMHCs), ammonia (NH3), sulfur dioxide (SO2), nitrogen oxides (NOx and NOy), soot, and dust. Leakage of liquified petroleum gas approached 10% during sampling periods, and automotive pollutant sources in Mexico City were found to match those in developed cities, despite a lower vehicle-to-person ratio of 0.1. Ammonia is released primarily from residential areas, at levels sufficient to titrate pollutant acids into particles across the entire basin. Enhancements of reduced nitrogen and hydrocarbons in the vapor phase skew the distribution of NOy species towards lower average deposition velocities. Partly as a result, downwind nutrient deposition occurs on a similar scale as nitrogen fixation across Central America, and augments marine nitrate upwelling. Dust suspension from unpaved roads and from the bed of Lake Texcoco was found to be comparable to that occurring on the periphery of the Sahara, Arabian, and Gobi deserts. In addition, sodium chloride (NaCl) in the dust may support heterogeneous chlorine oxide (ClOx) chemistry. The insights from our Mexico City analysis have been tentatively applied to the upcoming urbanization of Asia
Evaluation of dengue fever reports during an epidemic, Colombia
OBJECTIVE To assess the validity of dengue fever reports and how they relate to the definition of case and severity. METHODS Diagnostic test assessment was conducted using cross-sectional sampling from a universe of 13,873 patients treated during the fifth epidemiological period in health institutions from 11 Colombian departments in 2013. The test under analyses was the reporting to the National Public Health Surveillance System, and the reference standard was the review of histories identified by active institutional search. We reviewed all histories of patients diagnosed with dengue fever, as well as a random sample of patients with febrile syndromes. The specificity and sensitivity of reports were estimated for this purpose, considering the inverse of the probability of being selected for weighting. The concordance between reporting and the findings of the active institutional search was calculated using Kappa statistics. RESULTS We included 4,359 febrile patients, and 31.7% were classified as compatible with dengue fever (17 with severe dengue fever; 461 with dengue fever and warning signs; 904 with dengue fever and no warning signs). The global sensitivity of reports was 13.2% (95%CI 10.9;15.4) and specificity was 98.4% (95%CI 97.9;98.9). Sensitivity varied according to severity: 12.1% (95%CI 9.3;14.8) for patients presenting dengue fever with no warning signs; 14.5% (95%CI 10.6;18.4) for those presenting dengue fever with warning signs, and 40.0% (95%CI 9.6;70.4) for those with severe dengue fever. Concordance between reporting and the findings of the active institutional search resulted in a Kappa of 10.1%. CONCLUSIONS Low concordance was observed between reporting and the review of clinical histories, which was associated with the low reporting of dengue fever compatible cases, especially milder cases
Recent Emergence of Dengue Virus Serotype 4 in French Polynesia Results from Multiple Introductions from Other South Pacific Islands
BACKGROUND: Infection by dengue virus (DENV) is a major public health concern in hundreds of tropical and subtropical countries. French Polynesia (FP) regularly experiences epidemics that initiate, or are consecutive to, DENV circulation in other South Pacific Island Countries (SPICs). In January 2009, after a decade of serotype 1 (DENV-1) circulation, the first cases of DENV-4 infection were reported in FP. Two months later a new epidemic emerged, occurring about 20 years after the previous circulation of DENV-4 in FP. In this study, we investigated the epidemiological and molecular characteristics of the introduction, spread and genetic microevolution of DENV-4 in FP. METHODOLOGY/PRINCIPAL FINDINGS: Epidemiological data suggested that recent transmission of DENV-4 in FP started in the Leeward Islands and this serotype quickly displaced DENV-1 throughout FP. Phylogenetic analyses of the nucleotide sequences of the envelope (E) gene of 64 DENV-4 strains collected in FP in the 1980s and in 2009-2010, and some additional strains from other SPICs showed that DENV-4 strains from the SPICs were distributed into genotypes IIa and IIb. Recent FP strains were distributed into two clusters, each comprising viruses from other but distinct SPICs, suggesting that emergence of DENV-4 in FP in 2009 resulted from multiple introductions. Otherwise, we observed that almost all strains collected in the SPICs in the 1980s exhibit an amino acid (aa) substitution V287I within domain I of the E protein, and all recent South Pacific strains exhibit a T365I substitution within domain III. CONCLUSIONS/SIGNIFICANCE: This study confirmed the cyclic re-emergence and displacement of DENV serotypes in FP. Otherwise, our results showed that specific aa substitutions on the E protein were present on all DENV-4 strains circulating in SPICs. These substitutions probably acquired and subsequently conserved could reflect a founder effect to be associated with epidemiological, geographical, eco-biological and social specificities in SPICs
Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015
SummaryBackground The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. Methods We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors—the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI). Findings Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57·8% (95% CI 56·6–58·8) of global deaths and 41·2% (39·8–42·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211·8 million [192·7 million to 231·1 million] global DALYs), smoking (148·6 million [134·2 million to 163·1 million]), high fasting plasma glucose (143·1 million [125·1 million to 163·5 million]), high BMI (120·1 million [83·8 million to 158·4 million]), childhood undernutrition (113·3 million [103·9 million to 123·4 million]), ambient particulate matter (103·1 million [90·8 million to 115·1 million]), high total cholesterol (88·7 million [74·6 million to 105·7 million]), household air pollution (85·6 million [66·7 million to 106·1 million]), alcohol use (85·0 million [77·2 million to 93·0 million]), and diets high in sodium (83·0 million [49·3 million to 127·5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa. Interpretation Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden. Funding Bill & Melinda Gates Foundation
A chain mechanism for flagellum growth.
Bacteria swim by means of long flagella extending from the cell surface. These are assembled from thousands of protein subunits translocated across the cell membrane by an export machinery at the base of each flagellum. Unfolded subunits then transit through a narrow channel at the core of the growing flagellum to the tip, where they crystallize into the nascent structure. As the flagellum lengthens outside the cell, the rate of flagellum growth does not change. The mystery is how subunit transit is maintained at a constant rate without a discernible energy source in the channel of the external flagellum. We present evidence for a simple physical mechanism for flagellum growth that harnesses the entropic force of the unfolded subunits themselves. We show that a subunit docked at the export machinery can be captured by a free subunit through head-to-tail linkage of juxtaposed amino (N)- and carboxy (C)-terminal helices. We propose that sequential rounds of linkage would generate a multisubunit chain that pulls successive subunits into and through the channel to the flagellum tip, and by isolating filaments growing on bacterial cells we reveal the predicted chain of head-to-tail linked subunits in the transit channel of flagella. Thermodynamic analysis confirms that links in the subunit chain can withstand the pulling force generated by rounds of subunit crystallization at the flagellum tip, and polymer theory predicts that as the N terminus of each unfolded subunit crystallizes, the entropic force at the subunit C terminus would increase, rapidly overcoming the threshold required to pull the next subunit from the export machinery. This pulling force would adjust automatically over the increasing length of the growing flagellum, maintaining a constant rate of subunit delivery to the tip
Modular protein-RNA interactions regulating mRNA metabolism: a role for NMR
Here we review the role played by transient interactions between multi-functional proteins and their RNA targets in the regulation of mRNA metabolism, and we describe the important function of NMR spectroscopy in the study of these systems. We place emphasis on a general approach for the study of different features of modular multi-domain recognition that uses well-established NMR techniques and that has provided important advances in the general understanding of post-transcriptional regulation
Role of the Chemokine Receptors CCR1, CCR2 and CCR4 in the Pathogenesis of Experimental Dengue Infection in Mice
Dengue virus (DENV), a mosquito-borne flavivirus, is a public health problem in many tropical countries. Recent clinical data have shown an association between levels of different chemokines in plasma and severity of dengue. We evaluated the role of CC chemokine receptors CCR1, CCR2 and CCR4 in an experimental model of DENV-2 infection in mice. Infection of mice induced evident clinical disease and tissue damage, including thrombocytopenia, hemoconcentration, lymphopenia, increased levels of transaminases and pro-inflammatory cytokines, and lethality in WT mice. Importantly, infected WT mice presented increased levels of chemokines CCL2/JE, CCL3/MIP-1α and CCL5/RANTES in spleen and liver. CCR1-/- mice had a mild phenotype with disease presentation and lethality similar to those of WT mice. In CCR2-/- mice, lethality, liver damage, levels of IL-6 and IFN-γ, and leukocyte activation were attenuated. However, thrombocytopenia, hemoconcentration and systemic TNF-α levels were similar to infected WT mice. Infection enhanced levels of CCL17/TARC, a CCR4 ligand. In CCR4-/- mice, lethality, tissue injury and systemic inflammation were markedly decreased. Despite differences in disease presentation in CCR-deficient mice, there was no significant difference in viral load. In conclusion, activation of chemokine receptors has discrete roles in the pathogenesis of dengue infection. These studies suggest that the chemokine storm that follows severe primary dengue infection associates mostly to development of disease rather than protection
Cholesterol Corrects Altered Conformation of MHC-II Protein in Leishmania donovani Infected Macrophages: Implication in Therapy
Previously we reported that Kala-azar patients show progressive decrease in serum cholesterol as a function of splenic parasite burden. Splenic macrophages (MΦ) of Leishmania donovani (LD) infected mice show decrease in membrane cholesterol, while LD infected macrophages (I-MΦ) show defective T cell stimulating ability that could be corrected by liposomal delivery of cholesterol. T helper cells recognize peptide antigen in the context of
class II MHC molecule. It is known that the conformation of a large number of membrane proteins is dependent on membrane cholesterol. In this investigation we tried to understand the influence of decreased membrane cholesterol in I-MΦ on the conformation of MHC-II protein and peptide-MHC-II stability, and its bearing on the antigen specific T-cell activatio
- …