11 research outputs found

    Hsp90 orchestrates transcriptional regulation by Hsf1 and cell wall remodelling by MAPK signalling during thermal adaptation in a pathogenic yeast

    Get PDF
    Acknowledgments We thank Rebecca Shapiro for creating CaLC1819, CaLC1855 and CaLC1875, Gillian Milne for help with EM, Aaron Mitchell for generously providing the transposon insertion mutant library, Jesus Pla for generously providing the hog1 hst7 mutant, and Cathy Collins for technical assistance.Peer reviewedPublisher PD

    Causes, consequences and biomarkers of stress in swine: an update

    Get PDF
    BACKGROUND: In recent decades there has been a growing concern about animal stress on intensive pig farms due to the undesirable consequences that stress produces in the normal physiology of pigs and its effects on their welfare and general productive performance. This review analyses the most important types of stress (social, environmental, metabolic, immunological and due to human handling), and their biological consequences for pigs. The physio-pathological changes associated with stress are described, as well as the negative effects of stress on pig production. In addition an update of the different biomarkers used for the evaluation of stress is provided. These biomarkers can be classified into four groups according to the physiological system or axis evaluated: sympathetic nervous system, hypothalamic-pituitary-adrenal axis, hypothalamic-pituitary-gonadal axis and immune system. CONCLUSIONS: Stress it is a process with multifactorial causes and produces an organic response that generates negative effects on animal health and production. Ideally, a panel of various biomarkers should be used to assess and evaluate the stress resulting from diverse causes and the different physiological systems involved in the stress response. We hope that this review will increase the understanding of the stress process, contribute to a better control and reduction of potential stressful stimuli in pigs and, finally, encourage future studies and developments to better monitor, detect and manage stress on pig farms

    Secretory IgA in saliva can be a useful stress marker

    No full text
    To evaluate secretory immunoglobulin A (slgA) in saliva as an immunological stress marker, we reviewed the literature on slgA and its variation caused by psychosocial factors. Among the studies on the effect of academic stress on slgA secretion, we could distinguish two kinds of stress effects: the immediate stress effect which increases slgA secretion immediately after stress, and the delayed stress effect which decreases slgA secretion several days after stress. On the basis of production and secretion mechanisms of slgA, we also speculated on possible mechanisms that underlie the variations of slgA caused by stress. Eventually, we concluded diat slgA in saliva can be a useful stress marker if we analyze the delayed stress effect on slgA separately from the immediate stress effect on slgA
    corecore