1,281 research outputs found

    An Association of Prolactin Gene Polymorphisms with Some Milk Traits in Women

    Get PDF
    We investigated the effects of prolactin gene polymorphisms on milk contents in women. The main aim of this work is to determine the genotypes of prolactin and its relationship with some milk chemical contents in women. Genotyping was carried out at Molecular Genetic Laboratory at the College of Agriculture, whereas biochemical assays were performed at the Department of Diseases Analyses at the South Technical University. Blood samples were collected for the prolactin-related gene. DNA was extracted from fifty candidate women. The extra-pituitary prolactin gene promoter 1149 G/T was subjected to XapI restriction enzyme. In this analysis   PRL-Pxa, I products result in three genotypes TT, TG and GG, as well as the population, is under Hardy-Weinberg equilibrium. Our results showed that the highest milk fat yield, milk protein, lactose and sold not fat (SNF) materials percentages were obtained by the genotype GG

    Galilean quantum gravity with cosmological constant and the extended q-Heisenberg algebra

    Full text link
    We define a theory of Galilean gravity in 2+1 dimensions with cosmological constant as a Chern-Simons gauge theory of the doubly-extended Newton-Hooke group, extending our previous study of classical and quantum gravity in 2+1 dimensions in the Galilean limit. We exhibit an r-matrix which is compatible with our Chern-Simons action (in a sense to be defined) and show that the associated bi-algebra structure of the Newton-Hooke Lie algebra is that of the classical double of the extended Heisenberg algebra. We deduce that, in the quantisation of the theory according to the combinatorial quantisation programme, much of the quantum theory is determined by the quantum double of the extended q-deformed Heisenberg algebra.Comment: 22 page

    Antioxidant Activities of Methanol Extract and Solvent Fractions of Marine Macroalga, Avrainvillea erecta (Berkeley) A. Gepp and E.S. Gepp (Dichotomosiphonaceae)

    Get PDF
    Purpose: To determine the antioxidant activity of methanol extract (ME) and solvent fractions of Avrainvillea erecta as well as their total phenolic and flavonoid contents.Methods: The antioxidant activities of ME as well as its chloroform, butanol, and aqueous fractions (CF, BF and WF, respectively) of A. erecta were evaluated via 2,2-diphenyl-1-picrylhydrazyl (DPPH), nitric oxide (NO) and hydrogen peroxide (H2O2) scavenging assays as well as ferric reducing antioxidant power (FRAP) assay. Total phenolic and flavonoid contents were determined spectrophotometrically.Results: CF and BF possessed equally high DPPH scavenging activity with half-maximal effective concentration (EC50) of 535 and 532 mg/ml, respectively. CF had stronger NO scavenging activity (EC50 743 μg/mL) than ME and BF, although weaker compared with quercetin (EC50 279 μg/ml). CF also produced the highest FRAP value (451 μmol Fe2+/g) among all samples examined. Notably, H2O2 scavenging activity was only found in CF (EC50 387 μg/ml), which was as strong (p > 0.05) as that of gallic acid (EC50 456 μg/mL). BF had the highest total phenolic content while CF had the highest total flavonoid content.Conclusion: CF of A. erecta, which has the highest flavonoid content of all the extracts evaluated, is a potential source of natural antioxidants, especially hydrogen peroxide scavengers.Keywords: Antioxidant, Avrainvillea erecta, Flavonoid, Macroalga, Phenoli

    Identification and Characterization of Novel Mutations in Chronic Kidney Disease (CKD) and Autosomal Dominant Polycystic Kidney Disease (ADPKD) in Saudi Subjects by Whole-Exome Sequencing

    Get PDF
    Background: Autosomal dominant polycystic kidney disease (ADPKD) is a condition usually caused by a single gene mutation and manifested by both renal and extrarenal features, eventually leading to end-stage renal disease (ESRD) by the median age of 60 years worldwide. Approximately 89% of ADPKD patients had either PKD1 or PKD2 gene mutations. The majority (85%) of the mutations are in the PKD1 gene, especially in the context of family history. Objectives: This study investigated the genetic basis and the undiscovered genes that are involved in ADPKD development among the Saudi population. Materials and Methods: In this study, 11 patients with chronic kidney disease were enrolled. The diagnosis of ADPKD was based on history and diagnostic images: CT images include enlargement of renal outlines, renal echogenicity, and presence of multiple renal cysts with dilated collecting ducts, loss of corticomedullary differentiation, and changes in GFR and serum creatinine levels. Next-generation whole-exome sequencing was conducted using the Ion Torrent PGM platform. Results: Of the 11 Saudi patients diagnosed with chronic kidney disease (CKD) and ADPKD, the most common heterozygote nonsynonymous variant in the PKD1 gene was exon15: (c.4264G > A). Two missense mutations were identified with a PKD1 (c.1758A > C and c.9774T > G), and one patient had a PKD2 mutation (c.1445T > G). Three detected variants were novel, identified at PKD1 (c.1758A > C), PKD2L2 (c.1364A > T), and TSC2 (deletion of a'a at the 3'UTR, R1680C) genes. Other variants in PKD1L1 (c.3813_381 4delinsTG) and PKD1L2 (c.404C > T) were also detected. The median age of end-stage renal disease for ADPK patients in Saudi Arabia was 30 years. Conclusion: This study reported a common variant in the PKD1 gene in Saudi patients with typical ADPKD. We also reported (to our knowledge) for the first time two novel missense variants in PKD1 and PKD2L2 genes and one indel mutation at the 3'UTR of the TSC2 gene. This study establishes that the reported mutations in the affected genes resulted in ADPKD development in the Saudi population by a median age of 30. Nevertheless, future protein-protein interaction studies to investigate the influence of these mutations on PKD1 and PKD2 functions are required. Furthermore, large-scale population-based studies to verify these findings are recommended

    Quantum magnetism and criticality

    Get PDF
    Magnetic insulators have proved to be fertile ground for studying new types of quantum many body states, and I survey recent experimental and theoretical examples. The insights and methods transfer also to novel superconducting and metallic states. Of particular interest are critical quantum states, sometimes found at quantum phase transitions, which have gapless excitations with no particle- or wave-like interpretation, and control a significant portion of the finite temperature phase diagram. Remarkably, their theory is connected to holographic descriptions of Hawking radiation from black holes.Comment: 39 pages, 10 figures, review article for non-specialists; (v2) added clarifications and references; (v3) minor corrections; (v4) added footnote on hydrodynamic long-time tail

    Effective action in a higher-spin background

    Full text link
    We consider a free massless scalar field coupled to an infinite tower of background higher-spin gauge fields via minimal coupling to the traceless conserved currents. The set of Abelian gauge transformations is deformed to the non-Abelian group of unitary operators acting on the scalar field. The gauge invariant effective action is computed perturbatively in the external fields. The structure of the various (divergent or finite) terms is determined. In particular, the quadratic part of the logarithmically divergent (or of the finite) term is expressed in terms of curvatures and related to conformal higher-spin gravity. The generalized higher-spin Weyl anomalies are also determined. The relation with the theory of interacting higher-spin gauge fields on anti de Sitter spacetime via the holographic correspondence is discussed.Comment: 40 pages, Some errors and typos corrected, Version published in JHE
    corecore