37 research outputs found

    Activity of liver microsomal enzymes during the chronic phase of murine schistosomiasis

    No full text
    The effects of schistosomiasis on microsomal enzymes were studied on post-infection day 90 when accumulated damage and fibrosis are most intense but granulomatous reaction around the eggs harbored in the liver is smaller than during the earlier phases. Swiss Webster (SW) and DBA/2 mice of either sex (N = 12 per sex per group) were infected with 100 Schistosoma mansoni cercariae on postnatal day 10 and killed on post-infection day 90. Cytochrome P-450 (CYP) concentration and alkoxyresorufin-O-dealkylases (EROD, MROD, BROD, and PROD), p-nitrophenol-hydroxylase (PNPH), coumarin-7-hydroxylase (COH), and UDP-glucuronosyltransferase (UGT) activities were measured in hepatic microsomes. Age-matched mice of the same sex and strain were used as controls. In S. mansoni-infected mice, CYP1A- and 2B-mediated activities (control = 100%) were reduced in SW (EROD: male (M) 36%, female (F) 38%; MROD: M 38%, F 39%; BROD: M 46%, F 19%; PROD: M 50%, F 28%) and DBA/2 mice (EROD: M 64%, F 58%; MROD: M 60%; BROD: F 49%; PROD: M 73%) while PNPH (CYP2E1) was decreased in SW (M 31%, F 38%) but not in DBA/2 mice. COH did not differ between infected and control DBA/2 and UGT, a phase-2 enzyme, was not altered by infection. In conclusion, chronic S. mansoni infection reduced total CYP content and all CYP-mediated activities evaluated in SW mice, including those catalyzed by CYP2E1 (PNPH), CYP1A (EROD, MROD) and 2B (BROD, PROD). In DBA/2 mice, however, CYP2A5- and 2E1-mediated activities remained unchanged while total CYP content and activities mediated by other CYP isoforms were depressed during chronic schistosomiasis

    The ADAMTS18 gene is responsible for autosomal recessive early onset severe retinal dystrophy

    Get PDF
    Contains fulltext : 117740.pdf (publisher's version ) (Open Access)BACKGROUND: Inherited retinal dystrophies, including Retinitis Pigmentosa and Leber Congenital Amaurosis among others, are a group of genetically heterogeneous disorders that lead to variable degrees of visual deficits. They can be caused by mutations in over 100 genes and there is evidence for the presence of as yet unidentified genes in a significant proportion of patients. We aimed at identifying a novel gene for an autosomal recessive form of early onset severe retinal dystrophy in a patient carrying no previously described mutations in known genes. METHODS: An integrated strategy including homozygosity mapping and whole exome sequencing was used to identify the responsible mutation. Functional tests were performed in the medaka fish (Oryzias latipes) model organism to gain further insight into the pathogenic role of the ADAMTS18 gene in eye and central nervous system (CNS) dysfunction. RESULTS: This study identified, in the analyzed patient, a homozygous missense mutation in the ADAMTS18 gene, which was recently linked to Knobloch syndrome, a rare developmental disorder that affects the eye and the occipital skull. In vivo gene knockdown performed in medaka fish confirmed both that the mutation has a pathogenic role and that the inactivation of this gene has a deleterious effect on photoreceptor cell function. CONCLUSION: This study reveals that mutations in the ADAMTS18 gene can cause a broad phenotypic spectrum of eye disorders and contribute to shed further light on the complexity of retinal diseases
    corecore