6 research outputs found

    Cognitive Effort for Multi-agent Systems

    No full text

    Predictors of Enrollees\u27 Satisfaction with a County-Sponsored Indigent Health Care Plan

    No full text
    This article summarizes the findings from a study examining the predictors of satisfaction among individuals enrolled in a county-sponsored indigent health care plan. Mail survey procedures were used to obtain information from enrollees regarding their satisfaction with the health care plan, as well as enrollees\u27 demo-graphics, health care status, and trust in their providers. Results of a stepwise regression model developed using a random half of the respondents revealed enrollees\u27 trust in health care providers was the strongest predictor of general satisfaction, followed by perception of change in health status, and age. The model explained 49% of the variance and demonstrated little shrinkage when cross-validated on the remaining half of the respondents. Trust in health care providers, followed by perception of change in health status also emerged as the strongest predictors of enrollees\u27 satisfaction with freedom of choice

    BrO and inferred Bry profiles over the western Pacific: Relevance of inorganic bromine sources and a Bry minimum in the aged tropical tropopause layer

    No full text
    We report measurements of bromine monoxide (BrO) and use an observationally constrained chemical box model to infer total gas-phase inorganic bromine (Br) over the tropical western Pacific Ocean (tWPO) during the CONTRAST field campaign (January-February 2014). The observed BrO and inferred Br profiles peak in the marine boundary layer (MBL), suggesting the need for a bromine source from sea-salt aerosol (SSA), in addition to organic bromine (CBr). Both profiles are found to be C-shaped with local maxima in the upper free troposphere (FT). The median tropospheric BrO vertical column density (VCD) was measured as 1.6×1013 molec cm-2, compared to model predictions of 0.9×1013 molec cm-2 in GEOS-Chem (CBr but no SSA source), 0.4×1013 molec cm-2 in CAM-Chem (CBr and SSA), and 2.1×1013 molec cm-2 in GEOS-Chem (CBr and SSA). Neither global model fully captures the C-shape of the Br profile. A local Br maximum of 3.6 ppt (2.9-4.4 ppt; 95 % confidence interval, CI) is inferred between 9.5 and 13.5 km in air masses influenced by recent convective outflow. Unlike BrO, which increases from the convective tropical tropopause layer (TTL) to the aged TTL, gas-phase Br decreases from the convective TTL to the aged TTL. Analysis of gas-phase Br against multiple tracers (CFC-11, H2O-O3 ratio, and potential temperature) reveals a Br minimum of 2.7 ppt (2.3-3.1 ppt; 95 % CI) in the aged TTL, which agrees closely with a stratospheric injection of 2.6 ± 0.6 ppt of inorganic Br (estimated from CFC-11 correlations), and is remarkably insensitive to assumptions about heterogeneous chemistry. Br increases to 6.3 ppt (5.6-7.0 ppt; 95 % CI) in the stratospheric >middleworld> and 6.9 ppt (6.5-7.3 ppt; 95 % CI) in the stratospheric >overworld>. The local Br minimum in the aged TTL is qualitatively (but not quantitatively) captured by CAM-Chem, and suggests a more complex partitioning of gas-phase and aerosol Br species than previously recognized. Our data provide corroborating evidence that inorganic bromine sources (e.g., SSA-derived gas-phase Br) are needed to explain the gas-phase Br budget in the upper free troposphere and TTL. They are also consistent with observations of significant bromide in Upper Troposphere-Lower Stratosphere aerosols. The total Br budget in the TTL is currently not closed, because of the lack of concurrent quantitative measurements of gas-phase Br species (i.e., BrO, HOBr, HBr, etc.) and aerosol bromide. Such simultaneous measurements are needed to (1) quantify SSA-derived Br in the upper FT, (2) test Br partitioning, and possibly explain the gas-phase Br minimum in the aged TTL, (3) constrain heterogeneous reaction rates of bromine, and (4) account for all of the sources of Br to the lower stratosphere.Peer Reviewe
    corecore