11 research outputs found

    Low-lying structure of 15^{15}C: Information on the N=8 shell gap

    No full text
    International audienceThe low-lying structure of 15C has been investigated via the neutron-removal d(16C, t) reaction. The experiment was performed at GANIL using a secondary 16C beam produced by fragmentation in the LISE spectrometer at 17.2 MeV/nucleon with an intensity of 5 × 104 pps and 100% purity. The angle and energy of the light ejectile were detected by three MUST2 telescopes. The missing mass technique was used to reconstruct the excitation energy of 15C. In this spectrum, two bound states were observed (gs and the first excited state) and two unbound resonant states above the neutron separation threshold (S n = 1.218 MeV). From the differential cross sections, information on the angular momentum of the transferred nucleon and spectroscopic factors were deduced.The excitation energies and the deduced spectroscopic factors of the negative parity states placed above the neutron separation energy are an important measurement of the 2p-1h configurations in 15C. Our results show good agreement with shell-model calculations with the YSOX interaction and show a sensitivity to the N=8 shell gap

    Cross-shell states in 15^{15}C: a test for p-sd interactions

    No full text
    International audienceThe low-lying structure of 15^{15}C has been investigated via the neutron-removal 16^{16}C(d,t)(d,t) reaction. Along with bound neutron sd-shell hole states, unbound p-shell hole states have been firmly confirmed. The excitation energies and the deduced spectroscopic factors of the cross-shell states are an important measure of the [(p)1(sd)2][(p)^{-1}(sd)^{2}] neutron configurations in 15^{15}C. Our results show a very good agreement with shell-model calculations using the SFO-tls interaction for 15^{15}C. However, a modification of the pp-sdsd and sdsd-sdsd monopole terms was applied in order to reproduce the N=9N=9 isotone 17^{17}O. In addition, the excitation energies and spectroscopic factors have been compared to the first calculations of 15^{15}C with the ab initioab~ initio self-consistent Green's function method employing the NNLOsat_{sat} interaction. The results show the sensitivity to the size of the N=8N=8 shell gap and highlight the need of going beyond the current truncation scheme in the theory

    Cross-shell states in 15^{15}C: a test for p-sd interactions

    No full text
    International audienceThe low-lying structure of 15^{15}C has been investigated via the neutron-removal 16^{16}C(d,t)(d,t) reaction. Along with bound neutron sd-shell hole states, unbound p-shell hole states have been firmly confirmed. The excitation energies and the deduced spectroscopic factors of the cross-shell states are an important measure of the [(p)1(sd)2][(p)^{-1}(sd)^{2}] neutron configurations in 15^{15}C. Our results show a very good agreement with shell-model calculations using the SFO-tls interaction for 15^{15}C. However, a modification of the pp-sdsd and sdsd-sdsd monopole terms was applied in order to reproduce the N=9N=9 isotone 17^{17}O. In addition, the excitation energies and spectroscopic factors have been compared to the first calculations of 15^{15}C with the ab initioab~ initio self-consistent Green's function method employing the NNLOsat_{sat} interaction. The results show the sensitivity to the size of the N=8N=8 shell gap and highlight the need of going beyond the current truncation scheme in the theory

    Low-lying structure of 15^{15}C: Information on the N=8 shell gap

    No full text
    International audienceThe low-lying structure of 15C has been investigated via the neutron-removal d(16C, t) reaction. The experiment was performed at GANIL using a secondary 16C beam produced by fragmentation in the LISE spectrometer at 17.2 MeV/nucleon with an intensity of 5 × 104 pps and 100% purity. The angle and energy of the light ejectile were detected by three MUST2 telescopes. The missing mass technique was used to reconstruct the excitation energy of 15C. In this spectrum, two bound states were observed (gs and the first excited state) and two unbound resonant states above the neutron separation threshold (S n = 1.218 MeV). From the differential cross sections, information on the angular momentum of the transferred nucleon and spectroscopic factors were deduced.The excitation energies and the deduced spectroscopic factors of the negative parity states placed above the neutron separation energy are an important measurement of the 2p-1h configurations in 15C. Our results show good agreement with shell-model calculations with the YSOX interaction and show a sensitivity to the N=8 shell gap

    Cross-shell states in 15^{15}C: a test for p-sd interactions

    Get PDF
    International audienceThe low-lying structure of 15^{15}C has been investigated via the neutron-removal 16^{16}C(d,t)(d,t) reaction. Along with bound neutron sd-shell hole states, unbound p-shell hole states have been firmly confirmed. The excitation energies and the deduced spectroscopic factors of the cross-shell states are an important measure of the [(p)1(sd)2][(p)^{-1}(sd)^{2}] neutron configurations in 15^{15}C. Our results show a very good agreement with shell-model calculations using the SFO-tls interaction for 15^{15}C. However, a modification of the pp-sdsd and sdsd-sdsd monopole terms was applied in order to reproduce the N=9N=9 isotone 17^{17}O. In addition, the excitation energies and spectroscopic factors have been compared to the first calculations of 15^{15}C with the ab initioab~ initio self-consistent Green's function method employing the NNLOsat_{sat} interaction. The results show the sensitivity to the size of the N=8N=8 shell gap and highlight the need of going beyond the current truncation scheme in the theory

    Probing exotic cross-shell interactions at N=28N=28 with single-neutron transfer on 47^{47}K

    No full text
    International audienceWe present the first measurement of the 47^{47}K(d,pγd,p\gamma)48^{48}K transfer reaction, performed in inverse kinematics using a reaccelerated beam of 47^{47}K. The level scheme of 48^{48}K has been greatly extended with nine new bound excited states identified and spectroscopic factors deduced. Detailed comparisons with SDPF-U and SDPF-MU shell-model calculations reveal a number of discrepancies with these results, and a preference for SDPF-MU is found. Intriguingly, an apparent systematic overestimation of spectroscopic factors and a poor reproduction of the energies for 1^- states suggests that the mixing between the πs1/21d3/24\pi s^{\,\,\,1}_{1/2} d^{\,\,\,4}_{3/2} and πs1/22d3/23\pi s^{\,\,\,2}_{1/2} d^{\,\,\,3}_{3/2} proton configurations in 48^{48}K is not correctly described using current interactions, challenging our descriptions of light N=28N=28 nuclei
    corecore