5 research outputs found

    Generation of two-mode nonclassical states and a quantum phase gate operation in trapped ion cavity QED

    Full text link
    We propose a scheme to generate nonclassical states of a quantum system, which is composed of the one-dimensional trapped ion motion and a single cavity field mode. We show that two-mode SU(2) Schr\"odinger-cat states, entangled coherent states, two-mode squeezed vacuum states and their superposition can be generated. If the vibration mode and the cavity mode are used to represent separately a qubit, a quantum phase gate can be implemented.Comment: to appear in PR

    Cluster-type Entangled Coherent States

    No full text
    We present the cluster-type entangled coherent states (CTECS) and discuss their properties. A cavity QED generation scheme using suitable choices of atom-cavity interactions, obtained via detunings adjustments and the application of classical external fields, is also presented. After the realization of simple atomic measurements, CTECS representing nonlocal electromagnetic fields in separate cavities can be generated. © 2008 Elsevier B.V. All rights reserved.3722035803585Briegel, H.J., Raussendorf, R., (2001) Phys. Rev. Lett., 86, p. 910Raussendorf, R., Briegel, H.J., (2001) Phys. Rev. Lett., 86, p. 5188Raussendorf, R., Browne, D.E., Briegel, H.J., (2002) J. Mod. Opt., 49, p. 1299Raussendorf, R., Browne, D.E., Briegel, H.J., (2003) Phys. Rev. A, 68, p. 022312Nielsen, M.A., Chuang, I.L., (2000) Quantum Computation and Quantum Information, , Cambridge Univ. Press, CambridgeWalther, P., Resch, K.J., Rudolph, T., Schenck, E., Weinfurter, H., Vedral, V., Aspelmeyer, M., Zeilinger, A., (2005) Nature (London), 434, p. 169Scarani, V., Acín, A., Schenck, E., Aspelmeyer, M., (2005) Phys. Rev. A, 71, p. 042325Wang, X.-W., Shan, Y.-G., Xia, L.-X., Lu, M.-W., (2007) Phys. Lett. A, 364, p. 7Zou, X.B., Mathis, W., (2005) Phys. Rev. A, 71, p. 032308Zhang, A.-N., Lu, C.-Y., Zhou, X.-Q., Chen, Y.-A., Zhao, Z., Yang, T., Pan, J.-W., (2006) Phys. Rev. A, 73, p. 022330Prevedel, R., Walther, P., Tiefenbacher, F., Böhi, P., Kaltenbaek, R., Jennewein, T., Zelinger, A., (2007) Nature (London), 445, p. 65Chen, K., Li, C.-M., Zhang, Q., Chen, Y.-A., Goebel, A., Chen, S., Mair, A., Pan, J.-W., (2007) Phys. Rev. Lett., 99, p. 120503Lu, C.-Y., Zhou, X.-Q., Gühne, O., Gao, W.-B., Zhang, J., Yuan, Z.-S., Goebel, A., Pan, J.-W., (2007) Nature Phys., 3, p. 91Zheng, S.-B., (2006) Phys. Rev. A, 73, p. 065802Zhan, Z.-M., Yang, W.-X., Li, W.-B., Li, J.-H., (2006) Chin. Phys. Lett., 23, p. 1984Yang, W.-X., (2007) Chin. Phys. Lett., 24, p. 104Browne, D.E., Rudolph, T., (2005) Phys. Rev. Lett., 95, p. 010501Cho, J., Lee, H.-W., (2005) Phys. Rev. Lett., 95, p. 160501Zou, X.B., Mathis, W., (2005) Phys. Rev. A, 72, p. 013809Dong, P., Xue, Z.-Y., Yang, M., Cao, Z.-L., (2005) Phys. Rev. A, 73, p. 033818Blythe, P.J., Varcoe, B.T.H., (2006) New J. Phys., 8, p. 231Ye, L., (2007) Eur. Phys. J. D, 41, p. 413Ye, L., Guo, G.-C., (2007) Phys. Lett. A, 361, p. 460Zhan, Z.-M., Li, W.-B., (2007) Chin. Phys. Lett., 24, p. 344Louis, S.G.R., Nemoto, K., Munro, W.J., Spiller, T.P., (2007) Phys. Rev. A, 75, p. 042323Yang, W.-X., Gong, Z.-X., quant-ph/0704.2297Barrett, S., Kok, P., (2005) Phys. Rev. A, 71, p. 060310Zhang, X.L., Gao, K.L., Feng, M., (2007) Phys. Rev. A, 75, p. 034308Tanamoto, T., Liu, Y.-x., Fujita, S., Hu, X., Nori, F., (2006) Phys. Rev. Lett., 97, p. 230501Zheng, X.-H., Dong, P., Xue, Z.-Y., Cao, Z.-L., (2007) Phys. Lett. A, 365, p. 156Guo, G.-P., Zhang, H., Tu, T., Guo, G.-C., (2007) Phys. Rev. A, 75, p. 050301Vaidman, L., (1994) Phys. Rev. A, 49, p. 1473Polkinghorne, R.E.S., Ralph, T.C., (1999) Phys. Rev. Lett., 83, p. 2095Ban, M., (1999) J. Opt. B: Quantum Semiclass. Opt., 1, pp. L9Lloyd, S., Braunstein, S.L., (1999) Phys. Rev. Lett., 82, p. 1784Walls, D.F., Milburn, G.J., (1994) Quantum Optics, , Springer-Verlag, BerlinBrune, M., Schmidt-Kaler, F., Maali, A., Dreyer, J., Hagley, E., Raimond, J.M., Haroche, S., (1996) Phys. Rev. Lett., 76, p. 1800Meekhof, D.M., Monroe, C., King, B.E., Itano, W.M., Wineland, D.J., (1996) Phys. Rev. Lett., 76, p. 1796van Enk, S.J., Hirota, O., (2001) Phys. Rev. A, 64, p. 022313Jeong, H., Kim, M.S., Lee, J., (2001) Phys. Rev. A, 64, p. 052308Jeong, H., Kim, M.S., (2002) Phys. Rev. A, 65, p. 042305Yang, M., Cao, Z.-L., (2006) Physica A, 366, p. 243Sanders, B.C., (1992) Phys. Rev. A, 45, p. 6811Sanders, B.C., (1992) Phys. Rev. A, 46, p. 2966Zhang, J., Braunstein, S.L., (2006) Phys. Rev. A, 73, p. 032318Menicucci, N.C., van Loock, P., Gu, M., Weedbrook, C., Ralph, T.C., Nielsen, M.A., (2006) Phys. Rev. Lett., 97, p. 110501Van den Nest, M., Miyake, A., Dür, W., Briegel, H.J., (2006) Phys. Rev. Lett., 97, p. 150504Su, X., Tan, A., Jia, X., Zhang, J., Xie, C., Peng, K., (2007) Phys. Rev. Lett., 98, p. 070502Gottesman, D., Chuang, I.L., (1999) Nature (London), 402, p. 390Hirota, O., Sasaki, M., quant-ph/0101018Jeong, H., An, N.B., (2006) Phys. Rev. A, 74, p. 022104Gordon, G., Rigolin, G., (2006) Phys. Rev. A, 73, p. 062316Gilchrist, A., Nemoto, K., Munro, W.J., Ralph, T.C., Glancy, S., Braunstein, S.L., Milburn, G.J., (2004) J. Opt. B: Quantum Semiclass. Opt., 6, pp. S828Brune, M., Haroche, S., Raimond, J.M., Davidovich, L., Zagury, N., (1992) Phys. Rev. A, 45, p. 5193Peixoto de Faria, J.G., Nemes, M.C., (1999) Phys. Rev. A, 59, p. 3918Milman, P., Auffeves, A., Yamaguchi, F., Brune, M., Raimond, J.M., Haroche, S., (2005) Eur. Phys. J. D, 32, p. 233Solano, E., Agarwal, G.S., Walther, H., (2003) Phys. Rev. Lett., 90, p. 027903Zheng, S.-B., (2002) Phys. Rev. A, 66, p. 060303Zheng, S.-B., (2003) Phys. Rev. A, 68, p. 035801Yang, R.-C., Li, H.-C., Chen, M.-X., Lin, X., (2006) Chin. Phys., 15, p. 2315Zou, X.B., Pahlke, K., Mathis, W., (2002) Phys. Rev. A, 66, p. 044307Lee, J., Paternostro, M., Kim, M.S., Bose, S., (2006) Phys. Rev. Lett., 96, p. 080501Blais, A., Huang, R.-S., Wallraff, A., Girvin, S.M., Schoelkopf, R.J., (2004) Phys. Rev. A, 69, p. 062320Raimond, J.M., Brune, M., Haroche, S., (2001) Rev. Mod. Phys., 73, p. 565Yamaguchi, F., Milman, P., Brune, M., Raimond, J.M., Haroche, S., (2002) Phys. Rev. A, 66, p. 010302Gleyzes, S., Kuhr, S., Guerlin, C., Bernu, J., Deléglise, S., Hoff, U.B., Brune, M., Haroche, S., (2007) Nature (London), 446, p. 297Kuhr, S., Gleyzes, S., Guerlin, C., Bernu, J., Hoff, U.B., Deléglise, S., Osnaghi, S., Visentin, B., (2007) Appl. Phys. Lett., 90, p. 16410

    Experimental Determination of Irreversible Entropy Production in out-of-Equilibrium Mesoscopic Quantum Systems

    Get PDF
    By making use of a recently proposed framework for the inference of thermodynamic irreversibility in bosonic quantum systems, we experimentally measure and characterize the entropy production rates in the non-equilibrium steady state of two different physical systems -- a micro-mechanical resonator and a Bose-Einstein condensate -- each coupled to a high finesse cavity and hence also subject to optical loss. Key features of our setups, such as cooling of the mechanical resonator and signatures of a structural quantum phase transition in the condensate are reflected in the entropy production rates. Our work demonstrates the possibility to explore irreversibility in driven mesoscopic quantum systems and paves the way to a systematic experimental assessment of entropy production beyond the microscopic limit
    corecore