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4Department of Microtechnology and Nanoscience, Chalmers University of Technology, 412 96 Göteborg, Sweden
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By making use of a recently proposed framework for the inference of thermodynamic irreversibility in
bosonic quantum systems, we experimentally measure and characterize the entropy production rates in the non-
equilibrium steady state of two different physical systems – a micro-mechanical resonator and a Bose-Einstein
condensate – each coupled to a high finesse cavity and hence also subject to optical loss. Key features of our
setups, such as cooling of the mechanical resonator and signatures of a structural quantum phase transition in
the condensate are reflected in the entropy production rates. Our work demonstrates the possibility to explore ir-
reversibility in driven mesoscopic quantum systems and paves the way to a systematic experimental assessment
of entropy production beyond the microscopic limit.

Entropy is a crucial quantity for the characterisation of
dynamical processes: it quantifies and links seemingly dis-
tant notions such as disorder, information, and irreversibility
across different disciplinary boundaries [1, 2]. Every finite-
time transformation results in some production of entropy,
which signals the occurrence of irreversibility. Quantifying
the amount of irreversible entropy produced by a given pro-
cess is a goal of paramount importance: entropy production is
a key quantity for the characterisation of non-equilibrium pro-
cesses, and its minimisation improves the efficiency of ther-
mal machines. The second law of thermodynamics can be
formulated in terms of a universal constraint on the entropy
production, which can never be negative [3, 4]. In turn, this
leads to the following rate equation for the variation of the
entropy S [5]

dS
dt

= Π(t) − Φ(t), (1)

where Π(t) and Φ(t) are the irreversible entropy production
rate and the entropy flux from the system to the environment,
respectively. When the system reaches a non-equilibrium
steady-state (NESS) these quantities take values Πs and Φs

respectively, such that Πs = Φs > 0 [see Fig. 1 (a)]. Under
these conditions, entropy is produced and exchanged with the
local baths at the same rate. Only when both terms vanish
(Πs = Φs = 0) one recovers thermal equilibrium. The en-
tropy production rate directly accounts for the irreversibility
of a process and uncovers the non-equilibrium features of a
system.

The link between the entropy production rate Πs and ir-
reversibility becomes particularly relevant in small systems
subjected to fluctuations, for which a microscopic definition
of entropy production based on stochastic trajectories of the
system has been given [6]. Experimentally, this notion has

been used to test fluctuation theorems in a variety of classi-
cally operating systems such as a single-electron box [7], a
two-level system driven by a time-dependent potential [8],
and a levitated nanoparticle undergoing relaxation [9]. How-
ever, in order to harness the working principles of thermody-
namic machines working at the quantum level, and pinpoint
the differences between their performances and those of their
classical counterparts, it is important to analyse the entropy
generated through genuine quantum dynamics [10]. More-
over, while so far nanoscale systems have been used for the
experimental study of classical out-of-equilibrium thermody-
namics, irreversible entropy production arising from quantum
dynamics in mesoscopic quantum systems has not been ex-
perimentally investigated yet.

Recently, progress towards the theoretical characterisation
of entropy production in bosonic systems brought out of equi-
librium has been made [11–13]. In this paper, we make use
of such theoretical framework to quantify experimentally the
amount of irreversibility in the NESS of two different driven-
dissipative quantum systems, realized by coupling bosonic
systems to high-finesse cavities. The light field mode of a
cavity allows to infer the entropy production in terms of rel-
evant controllable parameters of the coupled system. In par-
ticular, in this study, we investigate the influence of differ-
ent dynamical regimes and sources of environmental noise
on the quantum fluctuations of a quantum system, and thus
the corresponding entropy production rate. In order to ad-
dress such influences, we assess two distinct experimental
setups: a cavity-optomechanical (cavity-OM) device and a
Bose-Einstein condensate (BEC) with cavity-mediated long-
range interactions [14–16]. The required measurements are
based on the spectra of the light fields leaking out of the re-
spective cavities. Remarkably, the entropy production reflects
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FIG. 1. (a) The driven-dissipative system, consisting of the coupled
subsystems a and b, reaches a NESS with an associated entropy pro-
duction rate Πs and an entropy flux Φs from the system to the en-
vironment. (b) Both systems can be modelled as two quantum har-
monic oscillators at frequencies ωa and ωb, linearly coupled with a
strength gab. Each oscillator is coupled to independent local baths
at temperature Ta and Tb, respectively. The corresponding coupling
rates are κa and γb. The oscillators can be pumped by an external field
(purple and orange arrows in the figure). (c) Optomechanical setup:
a micro-mechanical oscillator (δq̂b) is coupled to the field mode of
an optical Fabry-Perot cavity (δq̂a). For this setup only the cavity is
pumped. (d) Cavity-BEC setup: the external degree of freedom of
a BEC (δq̂b) is coupled to the field mode of a cavity (δq̂a). For this
setup only the atoms are pumped. Red and blue wiggly lines indicate
heating or cooling of the subsystems via coupling to the baths. In
both setups the number of excitations in the optical bath is zero, i.e.
nTa = 0 .

the specific features of the two experimental platforms, which
are very different in nature despite the common description
provided here. As such, our results show how a key indica-
tor of irreversibility is fully within the grasp of dynamically
controlled quantum dynamics.

In cavity-OM systems, the cavity photon number is cou-
pled to the position of the mechanical oscillator [cf. Fig. 1(b)
and (c)]. Our specific implementation uses a Fabry-Perot cav-
ity. One of its mirrors is a doubly clamped, highly reflective,
mechanical cantilever. Radiation pressure couples the intra-
cavity photon number to the position of the cantilever. The
mechanical support of the cantilever provides a local heat bath
at room temperature. The optical cavity is driven by a laser
that is red-detuned by the mechanical frequency from the op-
tical cavity resonance. For a driving laser without classical
noise, the cavity mode is coupled to a zero-excitation heat
bath. We observe sideband cooling of the mechanical mo-
tion [17–20] and, for large drive powers, strong optomechani-
cal coupling [21–23]. To analyse the entropy production rate
of the cavity-OM system, we measure the light reflected off

the cavity via homodyne detection.
Also in the second implementation, the two coupled har-

monic oscillators correspond to a light field mode coupled to
a mechanical degree of freedom [cf. Fig 1(b) and (d)]. We
load a BEC into a high-finesse optical cavity and illuminate
the atoms with a standing-wave transverse laser field. Far-off

resonant scattering of photons from the laser field into a near-

ωa/2π κa/2π ωb/2π γb/2π Tb Other
[MHz] [kHz] [kHz] [Hz] [K] parameters

cavity-OM 1.27815 435.849 1278.15 264.1 292 m = 176ng
cavity-BEC 15.13 1250 8.3 [25] 38 × 10−9 N = 105

TABLE I. Physical parameters for the two experimental setups. The
damping rate γb is constant in the cavity-OM experiment, while in
the cavity-BEC setup it depends on the actual working point (cf.
Ref. [25] for details). Here, m is the effective mass of the mechanical
oscillator, and N is the number of 87Rb atoms in the BEC.

detuned, initially empty cavity field mode, couples the zero-
momentum mode of the BEC to an excited momentum mode.
The scattering process mediates effective atom-atom interac-
tions, which are of long-range, since the photons are delocal-
ized in the cavity mode [16]. This interaction is tunable in
strength via the power of the transverse laser beam. The long-
range interaction can be brought to competition with the ki-
netic energy of the atoms, resulting in a structural phase tran-
sition [24]. In the spatially homogeneous phase, for increasing
interaction, the energy of the excited momentum mode soft-
ens, until at a critical interaction strength the system breaks a
discrete symmetry and the atoms arrange in a spatially modu-
lated density distribution. The equivalence of this system to a
Dicke model has been demonstrated in Ref. [15]. We measure
the cavity light field leaking through the mirrors with a het-
erodyne detection setup. The spectral analysis of this signal is
used to infer the diverging amount of atomic density fluctua-
tions accompanying the structural phase transition [24].

In both cases, the effective interaction between the oscilla-
tors is obtained by a harmonic expansion of the field opera-
tors around their mean values, resulting in two linearly cou-
pled quantum oscillators [cf. Fig. 1(b)]. We denote with δq̂a,b

and δ p̂a,b the position and momentum fluctuation operators
around the mean-field values of the two oscillators. In what
follows, a and b refer to the optical and mechanical/atomic os-
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(b)FIG. 2. Experimental density noise spectra. Panel (a): Density noise

spectrum (DNS) of the phase quadrature of the output cavity field,
attenuated before detection, for the cavity-OM setup. The jagged
blue curve refers to a value of the rescaled coupling gab/κa = 0.49,
while the jagged light-blue curve to gab/κa = 2.29. The fits of the
DNS are shown as smooth lines. Notice that the power spectrum is
originally dimensionless, and has been here converted to SI units for
uniformity of notation. Panel (b): DNS of the extra-cavity field for
the cavity-BEC system at a coupling (gab/gcr

ab)2 = 0.93. A fit of the
DNS is shown as a smooth line.
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cillators, respectively. In a frame rotating at the frequency ωp

of the respective pump fields, the oscillators have frequencies
ωa = ωc − ωp and ωb (here ωc is the frequency of the cavity
field). Their interaction is described by the Hamiltonian

Ĥ =
~ωa

2
(δq̂2

a + δp̂2
a) +
~ωb

2
(δq̂2

b + δ p̂2
b) + ~gabδq̂aδq̂b, (2)

where gab is the coupling strength between the modes. In the
superradiant phase of the Dicke model, an additional squeez-
ing term of the atomic mode must be included in the Hamil-
tonian [16]. For the derivation of the models and the values
of the parameters in the two setups, we refer to Refs. [25] and
to Table I. The systems are inherently open: each harmonic
oscillator is independently coupled to a local bath. This pro-
vides both a dissipation channel and extra quantum fluctua-
tions in addition to those present in the closed systems. The
optical cavity mode is coupled to the surrounding electromag-
netic vacuum with a decay rate κa. On the other hand, the
nature of the mechanical/atomic bath is specific to the setup
being considered. In the cavity-OM system, the coupling of
the vibrating mirror to the background of phonon modes is de-
scribed in terms of quantum Brownian motion. In the cavity-
BEC system, dissipation is due to the collection of excited
Bogolioubov modes, which provides a bath for the conden-
sate. In both cases, we assume oscillator b to be in contact
with a Markovian bath at temperature Tb and rate γb. The
average number of excitations in the equilibrium state of os-
cillator b is thus nTb = (e~ωb/kBTb − 1)−1 (cf. Ref [34]). The
driven-dissipative nature of the systems is such that a NESS is
eventually reached [14, 26].

The linear dynamics undergone by the coupled oscillators
allows us to exploit a framework developed for linear stochas-
tic processes [11–13]. In particular, the situation that we face
is perfectly suited to the use of the framework for the quantifi-
cation of entropy production proposed in Ref. [12], where the
entropy S of an arbitrary bosonic quantum system prepared in
a Gaussian state is written in terms of the Shannon entropy of
the Wigner function

S (t) = −

∫
W(u, t) logW(u, t)du, (3)

whereW(u, t) is the Wigner function at time t corresponding
to the state of the two oscillators, and u is the corresponding
vector of complex phase-space variables. The quadratic na-
ture of Eq. (2) and the initial thermal state of the oscillators in
both setups ensures the positivity ofW(u, t) and allows us to
write it in terms of the variances of the fluctuation operators of
the oscillators, which enormously simplifies the explicit cal-
culation of Π(t). In the NESS, all entropy produced in the
system flows to the environments so that Πs = Φs. Following
the lines sketched in Ref. [25], the entropy production rate in
the NESS due to the quantum fluctuations takes the form

Πs = Φs = 2γb

(
nb + 1/2
nTb + 1/2

− 1
)

+ 4κana = µb + µa, (4)

where na = 〈(δq̂2
a + δp̂2

a − 1)〉s/2 and nb = 〈(δq̂2
b + δ p̂2

b − 1)〉s/2
are the average number of excitations in the NESS of the two
oscillators in excess of the zero-point motion of the respective
harmonic oscillator. In the cavity-OM expression for µb, in-
stead of the full phonon number nb, only the momentum vari-
ance 〈δ p̂2

b〉s enters as we assume Brownian motion damping.
Eq. (4) represents our main theoretical result: it quantifies

the entropic contribution, ascribable to the quantum fluctua-
tions that the system has to pay to remain in its NESS. It thus
directly quantifies the irreversibility of the driven-dissipative
dynamics of two linearly coupled quantum oscillators, well
beyond the linear-response limit. For vanishing coupling the
systems reach thermal equilibrium (i.e. na = 0 and nb = nTb ),
and Πs vanishes. Moreover, there is no dependence on the
correlations between the oscillators, since in a NESS the en-
tropy production rate Πs equals the flux rate Φs. Thus, the
entropy flux from the system to the overall environment de-
termines the amount of irreversibility produced within the
driven-dissipative model, and is directly linked to the breaking
down of the microscopic detailed balance [10]. The previous
considerations also allow us to identify two contributions to
Πs, linked to the mechanical/atomic and optical oscillator, re-
ferred to as µa and µb, respectively. They are the individual
entropy flows to each environment and show how the entropy
produced in the NESS is split into two distinct fluxes. We note
that the explicit form of Eq. (4) in terms of the sum of such
independent terms strongly relies on the local nature of the
environments that we have cconsidered, and we expect it not
to hold in more general situations. The dissipative evolution
arising from the contact with the environments is manifested
explicitly in Eq. (4) by the presence of the rates γb and κa. In
both settings, the mechanical/atomic damping rate γb is much
smaller than the cavity decay rate κa, as can be appreciated
from Table I.

A general formulation of entropy production demands the
knowledge of the global state of the system [27–31]. How-
ever, Πs evaluated for the linearised dynamics in Eq. (2) only
involves the mean excitations of the oscillators [11, 13]. For
the experimental regime of interest, the dynamics of the cavity
field adiabatically follows the mechanical/atomic mode. By
measuring the light field leaking out of the cavity we thus
can infer about both µa and µb. For both experimental se-
tups, the coupling gab is varied by increasing the power of the
pump. The density noise spectrum (DNS) of the cavity field
quadratures is recorded [24, 32]. Typical examples of the ex-
perimental DNS, together with the fitting curves used for their
analysis, are shown in Fig. 2. In the cavity-OM experiment,
the datasets are taken for ωa = ωb, which is the working point
where the cooling of the mechanical resonator is most effec-
tive in the resolved-sideband regime. In the cavity-BEC ex-
periment, on the other hand, the parameters are ωa � ωb,
resulting in only a tiny admixture of the optical subsystem. A
further difference between the two platforms is in the way the
two oscillators are populated: in the optomechanical case, we
have nb � na for the lowest coupling values, while they be-
come comparable in size for the maximum cooling achieved.
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FIG. 3. Experimental assessment of the irreversible entropy pro-
duction rate Πs at the NESS for (a) the cavity-OM system and (b)
the cavity BEC system. In the cavity-OM system, gab is twice the
standard optomechanical coupling rate [14, 25]. For the cavity-BEC
setup, the control parameter gab is renormalised with respect to the
critical parameter gcr

ab =
√

(κ2
a + ω2

a)ωb/4ωa. The insets show the be-
haviour of µb in each of the settings considered. In both panels, the
solid black lines show the theoretical predictions based on the values
given in Table I. The blue and red dots show the experimental data
for the cavity-OM and cavity-BEC experiment, respectively. In panel
(a), the vertical error bars report statistical errors extracted from the
fit, while the horizontal ones show experimental error on the values
of the parameter. In panel (b), the vertical and horizontal error bars
report the statistical errors from the fit and the determination of the
critical point, respectively [24].

In the cavity-BEC setup, the cavity field is considerably less
populated than the atomic mode. Finally, the mechanical bath
is at room temperature, while the temperature of the atomic
reservoir is below the condensation point and in the nK range
(cf. Table I). This highlights and reinforces the diversity of
the experimental platforms that we have addressed within a
unique framework for the quantification of irreversible en-
tropy.

Following the technical approach illustrated in Refs. [11–
13] and sketched in [25], we have separately reconstructed
the two terms µa and µb that determine quantitatively Πs.
Fig. 3 displays the experimental data together with the the-
oretical model, demonstrating a very good quantitative agree-

ment. Besides the influences of the environments, the entropy
production rates depends on the interplay between the mutual
dynamics of the oscillators. For the cavity-OM system, the
contribution to Πs we observe from the mechanical oscillator
is much smaller than the one coming from the optical field.
On the contrary, µa ' µb in the atomic setup. For each of
the two experiments Πs is positive, in agreement with the sec-
ond law. In the cavity-OM setup, µa is an increasing function
of the coupling: the stronger the pump, the further the sys-
tem operates away from thermal equilibrium and the more en-
tropy is generated. At the same time, µb takes negative values,
whose magnitude increases for increasing values of gab. This
is legitimate as µb is not per se an entropy production rate
but represents an individual flux, which can thus take nega-
tive values (while µa + µb has to be positive). The observed
behaviour of µb is a signature of optomechanical cooling: its
growth, in absolute value, with gab shows the increase of the
entropy flow from the mechanical resonator to the cavity field,
corresponding to lowering of the effective temperature of the
resonator. As for the cavity-BEC system, the divergent be-
haviour of the entropy production rate at the critical point re-
flects the occurrence of the structural phase transition: at gcr

ab,
the known divergence of the populations of the two oscilla-
tors at the steady-state [33] results in the singularity of both
µa and µb separately. The irreversible entropy production rate
thus diverges at criticality.

We have experimentally determined the entropy production
rate, a key indicator of irreversibility, in driven-dissipative
quantum systems operating at the steady-state. The two exper-
imental setups, being instances of mesoscopic systems under-
going quantum dynamics, allowed us to link the phenomenol-
ogy of the entropy production rate to the salient features of
their physics. We have thus assessed architectures that could
embody the building blocks of a generation of future thermo-
dynamic machines working out of equilibrium, and thus sub-
jected to irreversible processes. For such devices, the quantifi-
cation of irreversibility will be very relevant for the character-
isation of their efficiency, as it will provide useful information
to design protocols able to quench it, thus optimising their
working principles.
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[18] S. Gröblacher, J. B. Hertzberg, M. R. Vanner, G. D. Cole, S.
Gigan, K. C. Schwab, and M. Aspelmeyer, Demonstration of an
ultracold micro-optomechanical oscillator in a cryogenic cavity,
Nature Phys. 5, 485 (2009).

[19] J. Chan, T. P. Mayer Alegre, A. H. Safavi-Naeini, J. T. Hill, A.
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