4 research outputs found

    Cultural effects on neurodevelopmental testing in children from six European countries: An analysis of NUTRIMENTHE Global Database

    Get PDF
    Cultural background is an important variable influencing neuropsychological performance. Multinational projects usually involve gathering data from participants from different countries and/or different cultures. Little is known about the influence of culture on neuropsychological testing results in children and especially in European children. The objectives of this study were to compare neuropsychological performance of children from six European countries (Belgium, Germany, Italy, The Netherlands, Poland and Spain) using a comprehensive neuropsychological battery and to apply a statistical procedure to reduce the influence of country/cultural differences in neuropsychological performance. As expected, the results demonstrated differences in neuropsychological performance among children of the six countries involved. Cultural differences remained after adjusting for other confounders related to neuropsychological execution, such as sex, type of delivery, maternal age, gestational age and maternal educational level. Differences between countries disappeared and influence of culture was considerably reduced when standardised scores by country and sex were used. These results highlight the need for developing specific procedures to compare neuropsychological performance among children from different cultures to be used in multicentre studies

    Adaptive step ODE algorithms for the 3D simulation of electric heart activity with graphics processing units

    Full text link
    In this paper we studied the implementation and performance of adaptive step methods for large systems of ordinary differential equations systems in graphics processing units, focusing on the simulation of three-dimensional electric cardiac activity. The Rush-Larsen method was applied in all the implemented solvers to improve efficiency. We compared the adaptive methods with the fixed step methods, and we found that the fixed step methods can be faster while the adaptive step methods are better in terms of accuracy and robustness. (c) 2013 Elsevier Ltd. All rights reserved.This work has been partially funded by Universitat Politecnica de Valencia through Programa de Apoyo a la InvestigaciOn y Desarrollo (PAID-06-11) and (PAID-05-12), by Generalitat Valenciana through projects PROMETEO/2009/013 and Ayudas para la realizacion de proyectos de I+D para grupos de investigacion emergentes GV/2012/039, and by Ministerio Espafiol de Economia y Competitividad through project TEC2012-38142-004.García Mollá, VM.; Liberos Mascarell, A.; Vidal Maciá, AM.; Guillem Sánchez, MS.; Millet Roig, J.; González Salvador, A.; Martínez Zaldívar, FJ.... (2014). Adaptive step ODE algorithms for the 3D simulation of electric heart activity with graphics processing units. Computers in Biology and Medicine. 44:15-26. https://doi.org/10.1016/j.compbiomed.2013.10.023S15264

    Construction status and prospects of the Hyper-Kamiokande project

    Get PDF
    The Hyper-Kamiokande project is a 258-kton Water Cherenkov together with a 1.3-MW high-intensity neutrino beam from the Japan Proton Accelerator Research Complex (J-PARC). The inner detector with 186-kton fiducial volume is viewed by 20-inch photomultiplier tubes (PMTs) and multi-PMT modules, and thereby provides state-of-the-art of Cherenkov ring reconstruction with thresholds in the range of few MeVs. The project is expected to lead to precision neutrino oscillation studies, especially neutrino CP violation, nucleon decay searches, and low energy neutrino astronomy. In 2020, the project was officially approved and construction of the far detector was started at Kamioka. In 2021, the excavation of the access tunnel and initial mass production of the newly developed 20-inch PMTs was also started. In this paper, we present a basic overview of the project and the latest updates on the construction status of the project, which is expected to commence operation in 2027

    Prospects for neutrino astrophysics with Hyper-Kamiokande

    Get PDF
    Hyper-Kamiokande is a multi-purpose next generation neutrino experiment. The detector is a two-layered cylindrical shape ultra-pure water tank, with its height of 64 m and diameter of 71 m. The inner detector will be surrounded by tens of thousands of twenty-inch photosensors and multi-PMT modules to detect water Cherenkov radiation due to the charged particles and provide our fiducial volume of 188 kt. This detection technique is established by Kamiokande and Super-Kamiokande. As the successor of these experiments, Hyper-K will be located deep underground, 600 m below Mt. Tochibora at Kamioka in Japan to reduce cosmic-ray backgrounds. Besides our physics program with accelerator neutrino, atmospheric neutrino and proton decay, neutrino astrophysics is an important research topic for Hyper-K. With its fruitful physics research programs, Hyper-K will play a critical role in the next neutrino physics frontier. It will also provide important information via astrophysical neutrino measurements, i.e., solar neutrino, supernova burst neutrinos and supernova relic neutrino. Here, we will discuss the physics potential of Hyper-K neutrino astrophysics
    corecore