33 research outputs found

    Overview of the JET results in support to ITER

    Get PDF

    Repositioning of the global epicentre of non-optimal cholesterol

    Get PDF
    High blood cholesterol is typically considered a feature of wealthy western countries1,2. However, dietary and behavioural determinants of blood cholesterol are changing rapidly throughout the world3 and countries are using lipid-lowering medications at varying rates. These changes can have distinct effects on the levels of high-density lipoprotein (HDL) cholesterol and non-HDL cholesterol, which have different effects on human health4,5. However, the trends of HDL and non-HDL cholesterol levels over time have not been previously reported in a global analysis. Here we pooled 1,127 population-based studies that measured blood lipids in 102.6 million individuals aged 18 years and older to estimate trends from 1980 to 2018 in mean total, non-HDL and HDL cholesterol levels for 200 countries. Globally, there was little change in total or non-HDL cholesterol from 1980 to 2018. This was a net effect of increases in low- and middle-income countries, especially in east and southeast Asia, and decreases in high-income western countries, especially those in northwestern Europe, and in central and eastern Europe. As a result, countries with the highest level of non-HDL cholesterol—which is a marker of cardiovascular risk—changed from those in western Europe such as Belgium, Finland, Greenland, Iceland, Norway, Sweden, Switzerland and Malta in 1980 to those in Asia and the Pacific, such as Tokelau, Malaysia, The Philippines and Thailand. In 2017, high non-HDL cholesterol was responsible for an estimated 3.9 million (95% credible interval 3.7 million–4.2 million) worldwide deaths, half of which occurred in east, southeast and south Asia. The global repositioning of lipid-related risk, with non-optimal cholesterol shifting from a distinct feature of high-income countries in northwestern Europe, north America and Australasia to one that affects countries in east and southeast Asia and Oceania should motivate the use of population-based policies and personal interventions to improve nutrition and enhance access to treatment throughout the world.</p

    Repositioning of the global epicentre of non-optimal cholesterol

    Get PDF
    High blood cholesterol is typically considered a feature of wealthy western countries1,2. However, dietary and behavioural determinants of blood cholesterol are changing rapidly throughout the world3 and countries are using lipid-lowering medications at varying rates. These changes can have distinct effects on the levels of high-density lipoprotein (HDL) cholesterol and non-HDL cholesterol, which have different effects on human health4,5. However, the trends of HDL and non-HDL cholesterol levels over time have not been previously reported in a global analysis. Here we pooled 1,127 population-based studies that measured blood lipids in 102.6 million individuals aged 18 years and older to estimate trends from 1980 to 2018 in mean total, non-HDL and HDL cholesterol levels for 200 countries. Globally, there was little change in total or non-HDL cholesterol from 1980 to 2018. This was a net effect of increases in low- and middle-income countries, especially in east and southeast Asia, and decreases in high-income western countries, especially those in northwestern Europe, and in central and eastern Europe. As a result, countries with the highest level of non-HDL cholesterol�which is a marker of cardiovascular risk�changed from those in western Europe such as Belgium, Finland, Greenland, Iceland, Norway, Sweden, Switzerland and Malta in 1980 to those in Asia and the Pacific, such as Tokelau, Malaysia, The Philippines and Thailand. In 2017, high non-HDL cholesterol was responsible for an estimated 3.9 million (95 credible interval 3.7 million�4.2 million) worldwide deaths, half of which occurred in east, southeast and south Asia. The global repositioning of lipid-related risk, with non-optimal cholesterol shifting from a distinct feature of high-income countries in northwestern Europe, north America and Australasia to one that affects countries in east and southeast Asia and Oceania should motivate the use of population-based policies and personal interventions to improve nutrition and enhance access to treatment throughout the world. © 2020, The Author(s), under exclusive licence to Springer Nature Limited

    Classification in a Skewed Online Trade Fraud Complaint Corpus

    No full text
    This paper explores how machine learning techniques can be used to support handling of skewed online trade fraud complaints, by predicting whether a complaint will be withdrawn or not. To optimize the performance of each classifier, the influence of resampling, word weighting, and word normalization on the classification performance is assessed. It is found that machine learning can indeed be used for this purpose, by improving the baseline performance in comparison to the skewness ratio up to 13 pp using Logistic Regression. Furthermore, the results show that data alteration techniques can improve classifier performance on a skewed dataset up to 13.5 pp

    Reassessing energy deposition for the ITER 5 MA vertical displacement event with an improved DINA model

    No full text
    The beryllium (Be) main chamber wall interaction during a 5 MA/1.8 T upward, unmitigated VDE scenario, first analysed in [J. Coburn et al., Phys. Scr. T171 (2020) 014076] for ITER, has been re-evaluated using the latest energy deposition analysis software. Updates to the DINA disruption model are summarized, including an improved numerical convergence for the 0D power balance, limitations on the safety factor within the plasma core, and the choice to maintain a constant plasma + halo poloidal cross-section. Such updates result in a broad halo region and higher radiated power fractions compared to previous models. The new scenario lasts for ~75 ms and deposits ~29 MJ of energy, with the radial distribution of parallel heat flux q‖r resembling an exponential falloff with an effective λq=75-198 mm. A maximum halo width wh of 0.52 m at the outboard midplane is observed. SMITER field line tracing and energy deposition simulations calculate a q⊥,max of ~83 MW/m2 on the upper first wall panels (FWP). Heat transfer calculations with the MEMOS-U code show that the FWP surface temperature reaches ~1000 K, well below the Be melt threshold. Variations of this 5 MA scenario with Be impurity densities from 0 to 3∙1019 m−3 also remain below the melt threshold despite differences in energy deposition and duration. These results are in contrast to the early study which predicted melt damage to the first wall [J. Coburn et al., Phys. Scr. T171 (2020) 014076], and emphasize the importance of accurate models for the halo width wh and the heat flux distribution q‖r within that halo width. The 2020 halo model in DINA has been compared with halo current experiments on COMPASS, JET, and Alcator C-Mod, and the preliminary results build confidence in the broad halo width predictions. Results for the 5 MA VDE are compared with those for a 15 MA equivalent, generated using the new DINA model. At the higher current, significant melting of the upper FWP is to be expected

    The JOREK non-linear extended MHD code and applications to large-scale instabilities and their control in magnetically confined fusion plasmas

    No full text
    JOREK is a massively parallel fully implicit non-linear extended MHD code for realistic tokamak X-point plasmas. It has become a widely used extremely versatile simulation code for studying large-scale plasma instabilities and their control and is continuously developed in an international community with strong involvements in the European fusion research program and ITER organization. This article gives a comprehensive overview of the physics models implemented, numerical methods applied for solving the equations and physics studies performed with the code. A dedicated section highlights some of the verification work done for the code. A hierarchy of different physics models is available including a free boundary and resistive wall extension and hybrid kinetic-fluid models. The code allows for flux-surface aligned iso-parametric finite element grids in single and double X-point plasmas which can be extended to the true physical walls and uses a robust fully implicit time stepping. Particular focus is laid on plasma edge and scrape-off layer (SOL) physics as well as disruption related phenomena. Among the key results obtained with JOREK regarding plasma edge and SOL, are deep insights into the dynamics of edge localized modes (ELMs), ELM cycles, and ELM control by resonant magnetic perturbations, pellet injection, as well as by vertical magnetic kicks. Also ELM free regimes, detachment physics, the generation and transport of impurities during an ELM, and electrostatic turbulence in the pedestal region are investigated. Regarding disruptions, the focus is on the dynamics of the thermal quench and current quench triggered by massive gas injection (MGI) and shattered pellet injection (SPI), runaway electron (RE) dynamics as well as the RE interaction with MHD modes, and vertical displacement events (VDEs). Also the seeding and suppression of tearing modes (TMs), the dynamics of naturally occurring thermal quenches triggered by locked modes, and radiative collapses are being studied
    corecore