195 research outputs found
Ac Stark Effects and Harmonic Generation in Periodic Potentials
The ac Stark effect can shift initially nonresonant minibands in
semiconductor superlattices into multiphoton resonances. This effect can result
in strongly enhanced generation of a particular desired harmonic of the driving
laser frequency, at isolated values of the amplitude.Comment: RevTeX, 10 pages (4 figures available on request), Preprint
UCSBTH-93-2
Weighing the local dark matter with RAVE red clump stars
We determine the Galactic potential in the solar neigbourhood from RAVE
observations. We select red clump stars for which accurate distances, radial
velocities, and metallicities have been measured. Combined with data from the
2MASS and UCAC catalogues, we build a sample of 4600 red clump stars within a
cylinder of 500 pc radius oriented in the direction of the South Galactic Pole,
in the range of 200 pc to 2000 pc distances. We deduce the vertical force and
the total mass density distribution up to 2 kpc away from the Galactic plane by
fitting a distribution function depending explicitly on three isolating
integrals of the motion in a separable potential locally representing the
Galactic one with four free parameters. Because of the deep extension of our
sample, we can determine nearly independently the dark matter mass density and
the baryonic disc surface mass density. We find (i) at 1kpc Kz/(2piG) = 68.5 pm
1.0 Msun/pc2, and (ii) at 2 kpc Kz/(2piG) = 96.9 pm 2.2 Msun/pc2. Assuming the
solar Galactic radius at R0 = 8.5 kpc, we deduce the local dark matter density
rhoDM (z=0) = 0.0143 pm 0.0011Msun pc3 = 0.542 pm 0.042 Gev/cm3 and the
baryonic surface mass density Sigma = 44.4 pm 4.1 Msun/pc2 . Our results are in
agreement with previously published Kz determinations up to 1 kpc, while the
extension to 2 kpc shows some evidence for an unexpectedly large amount of dark
matter. A flattening of the dark halo of order 0.8 can produce such a high
local density in combination with a circular velocity of 240 km/s . Another
explanation, allowing for a lower circular velocity, could be the presence of a
secondary dark component, a very thick disc resulting either from the deposit
of dark matter from the accretion of multiple small dwarf galaxies, or from the
presence of an effective phantom thick disc in the context of effective
galactic-scale modifications of gravity.Comment: 14 pages, 13 figures, accepted to Astronomy and Astrophysic
Chemical gradients in the Milky Way from the RAVE data. II. Giant stars
We provide new constraints on the chemo-dynamical models of the Milky Way by
measuring the radial and vertical chemical gradients for the elements Mg, Al,
Si, Ti, and Fe in the Galactic disc and the gradient variations as a function
of the distance from the Galactic plane (). We selected a sample of giant
stars from the RAVE database using the gravity criterium 1.7log g2.8. We
created a RAVE mock sample with the Galaxia code based on the Besan\c con model
and selected a corresponding mock sample to compare the model with the observed
data. We measured the radial gradients and the vertical gradients as a function
of the distance from the Galactic plane to study their variation across the
Galactic disc. The RAVE sample exhibits a negative radial gradient of
dex kpc close to the Galactic plane ( kpc)
that becomes flatter for larger . Other elements follow the same trend
although with some variations from element to element. The mock sample has
radial gradients in fair agreement with the observed data. The variation of the
gradients with shows that the Fe radial gradient of the RAVE sample has
little change in the range kpc and then flattens. The iron
vertical gradient of the RAVE sample is slightly negative close to the Galactic
plane and steepens with . The mock sample exhibits an iron vertical
gradient that is always steeper than the RAVE sample. The mock sample also
shows an excess of metal-poor stars in the [Fe/H] distributions with respect to
the observed data. These discrepancies can be reduced by decreasing the number
of thick disc stars and increasing their average metallicity in the Besan\c con
model.Comment: 13 pages, 9 figures, 5 tables, A&A accepte
Kinematic modelling of the Milky Way using the RAVE and GCS stellar surveys
We investigate the kinematic parameters of the Milky Way disc using the RAVE
and GCS stellar surveys. We do this by fitting a kinematic model to the data
taking the selection function of the data into account. For stars in the GCS we
use all phase-space coordinates, but for RAVE stars we use only . Using MCMC technique, we investigate the full posterior distributions
of the parameters given the data. We investigate the `age-velocity dispersion'
relation for the three kinematic components
(), the radial dependence of the velocity
dispersions, the Solar peculiar motion (), the
circular speed at the Sun and the fall of mean azimuthal motion with
height above the mid-plane. We confirm that the Besan\c{c}on-style Gaussian
model accurately fits the GCS data, but fails to match the details of the more
spatially extended RAVE survey. In particular, the Shu distribution function
(DF) handles non-circular orbits more accurately and provides a better fit to
the kinematic data. The Gaussian distribution function not only fits the data
poorly but systematically underestimates the fall of velocity dispersion with
radius. We find that correlations exist between a number of parameters, which
highlights the importance of doing joint fits. The large size of the RAVE
survey, allows us to get precise values for most parameters. However, large
systematic uncertainties remain, especially in and . We
find that, for an extended sample of stars, is underestimated by as
much as if the vertical dependence of the mean azimuthal motion is
neglected. Using a simple model for vertical dependence of kinematics, we find
that it is possible to match the Sgr A* proper motion without any need for
being larger than that estimated locally by surveys like GCS.Comment: 27 pages, 13 figures, accepted for publication in Ap
APASS Landolt-Sloan BVgri photometry of RAVE stars. I. Data, effective temperatures and reddenings
We provide APASS photometry in the Landolt BV and Sloan g'r'i' bands for all
the 425,743 stars included in the latest 4th RAVE Data Release. The internal
accuracy of the APASS photometry of RAVE stars, expressed as error of the mean
of data obtained and separately calibrated over a median of 4 distinct
observing epochs and distributed between 2009 and 2013, is 0.013, 0.012, 0.012,
0.014 and 0.021 mag for B, V, g', r' and i' band, respectively. The equally
high external accuracy of APASS photometry has been verified on secondary
Landolt and Sloan photometric standard stars not involved in the APASS
calibration process, and on a large body of literature data on field and
cluster stars, confirming the absence of offsets and trends. Compared with the
Carlsberg Meridian Catalog (CMC-15), APASS astrometry of RAVE stars is accurate
to a median value of 0.098 arcsec. Brightness distribution functions for the
RAVE stars have been derived in all bands. APASS photometry of RAVE stars,
augmented by 2MASS JHK infrared data, has been chi2 fitted to a densely
populated synthetic photometric library designed to widely explore in
temperature, surface gravity, metallicity and reddening. Resulting Teff and
E(B-V), computed over a range of options, are provided and discussed, and will
be kept updated in response to future APASS and RAVE data releases. In the
process it is found that the reddening caused by an homogeneous slab of dust,
extending for 140 pc on either side of the Galactic plane and responsible for
E(B-V,poles)=0.036 +/- 0.002 at the galactic poles, is a suitable approximation
of the actual reddening encountered at Galactic latitudes |b|>=25 deg.Comment: Astronomical Journal, in press. Resolution of Figures degrated to
match arXiv file size limit
The RAVE survey: the Galactic escape speed and the mass of the Milky Way
We construct new estimates on the Galactic escape speed at various
Galactocentric radii using the latest data release of the Radial Velocity
Experiment (RAVE DR4). Compared to previous studies we have a database larger
by a factor of 10 as well as reliable distance estimates for almost all stars.
Our analysis is based on the statistical analysis of a rigorously selected
sample of 90 high-velocity halo stars from RAVE and a previously published data
set. We calibrate and extensively test our method using a suite of cosmological
simulations of the formation of Milky Way-sized galaxies. Our best estimate of
the local Galactic escape speed, which we define as the minimum speed required
to reach three virial radii , is km/s (90%
confidence) with an additional 5% systematic uncertainty, where is
the Galactocentric radius encompassing a mean over-density of 340 times the
critical density for closure in the Universe. From the escape speed we further
derive estimates of the mass of the Galaxy using a simple mass model with two
options for the mass profile of the dark matter halo: an unaltered and an
adiabatically contracted Navarro, Frenk & White (NFW) sphere. If we fix the
local circular velocity the latter profile yields a significantly higher mass
than the un-contracted halo, but if we instead use the statistics on halo
concentration parameters in large cosmological simulations as a constraint we
find very similar masses for both models. Our best estimate for , the
mass interior to (dark matter and baryons), is M (corresponding to M). This estimate is in good agreement with recently published
independent mass estimates based on the kinematics of more distant halo stars
and the satellite galaxy Leo I.Comment: 16 pages, 15 figures; accepted for publication in Astronomy &
Astrophysic
Highly deformed Ca configurations in Si + C
The possible occurrence of highly deformed configurations in the Ca
di-nuclear system formed in the Si + C reaction is investigated
by analyzing the spectra of emitted light charged particles. Both inclusive and
exclusive measurements of the heavy fragments (A 10) and their
associated light charged particles (protons and particles) have been
made at the IReS Strasbourg {\sc VIVITRON} Tandem facility at bombarding
energies of Si) = 112 MeV and 180 MeV by using the {\sc ICARE}
charged particle multidetector array. The energy spectra, velocity
distributions, and both in-plane and out-of-plane angular correlations of light
charged particles are compared to statistical-model calculations using a
consistent set of parameters with spin-dependent level densities. The analysis
suggests the onset of large nuclear deformation in Ca at high spin.Comment: 33 pages, 11 figure
The rich are different: evidence from the RAVE survey for stellar radial migration
Using the RAdial Velocity Experiment fourth data release (RAVE DR4), and a new metallicity calibration that will be also taken into account in the future RAVE DR5, we investigate the existence and the properties of super-solar metallicity stars ([M/H] ≳ +0.1dex) in the sample, and in particular in the Solar neighbourhood. We find that RAVE is rich in super-solar metallicity stars, and that the local metallicity distribution function declines remarkably slowly up to +0.4dex. Our results show that the kinematics and height distributions of the super-solar metallicity stars are identical to those of the [M/H] ≲ 0 thin-disc giants that we presume were locally manufactured. The eccentricities of the super-solar metallicity stars indicate that half of them are on a roughly circular orbit (e ≤ 0.15), so under the assumption that the metallicity of the interstellar medium at a given radius never decreases with time, they must have increased their angular momenta by scattering at corotation resonances of spiral arms from regions far inside the Solar annulus. The likelihood that a star will migrate radially does not seem to decrease significantly with increasing amplitude of vertical oscillations within range of oscillation amplitudes encountered in the disc
The R-Process Alliance: Discovery of a Low-α, r-process-enhanced Metal-poor Star in the Galactic Halo
A new moderately r-process-enhanced metal-poor star, RAVE J093730.5−062655, has been identified in the Milky Way halo as part of an ongoing survey by the R-Process Alliance. The temperature and surface gravity indicate that J0937−0626 is likely a horizontal branch star. At [Fe/H] = −1.86, J0937−0626 is found to have subsolar [X/Fe] ratios for nearly every light, α, and Fe-peak element. The low [α/Fe] ratios can be explained by an ~0.6 dex excess of Fe; J0937−0626 is therefore similar to the subclass of "iron-enhanced" metal-poor stars. A comparison with Milky Way field stars at [Fe/H] = −2.5 suggests that J0937−0626 was enriched in material from an event, possibly a Type Ia supernova, that created a significant amount of Cr, Mn, Fe, and Ni and smaller amounts of Ca, Sc, Ti, and Zn. The r-process enhancement of J0937−0626 is likely due to a separate event, which suggests that its birth environment was highly enriched in r-process elements. The kinematics of J0937−0626, based on Gaia DR2 data, indicate a retrograde orbit in the Milky Way halo; J0937−0626 was therefore likely accreted from a dwarf galaxy that had significant r-process enrichment
Configurations and decay hindrances of high- K states in Hf 180
Multi-quasiparticle high-K states, several of which are isomeric, were observed in Hf180 with the Gammasphere array. Lifetimes in the ns-μs range were determined using centroid-shift and decay measurements within a μs coincidence time window. The configurations of high-K states involve two and four quasiparticles, with states up to Kπ=(18-) established. High-K excitations are found to be progressively more favored with increasing excitation energy. The K quantum number is quite robust up to the highest spins observed, as evidenced by the large values of the reduced hindrance for isomeric decays. Rotational bands built on three high-K states are identified, and the measured branching ratios in these sequences enable the assignment of underlying configurations. Multi-quasiparticle calculations using the Lipkin-Nogami approach for pairing, with blocking included, reproduce the observed high-K energies quite well
- …