1,365 research outputs found

    A Petri net simulation model for virtual construction of earthmoving operations

    Get PDF
    A common and extended Petri net simulation framework for virtual construction of earthmoving operations is developed to simulate dynamic changes of workflow and information flow in the earthmoving construction process and illustrate the constraint relationship between various operational equipment and construction restrictions. The proposed framework considers factors that influence earthmoving operations including randomness of construction activities, individual preference of equipment scheduling, and constraint relationship between equipment and construction environment. With the given equipment availability and project indirect cost, the framework can predict construction situation, equipment utilization rate, estimated duration and cost to achieve visualized and intelligent scheduling of virtual construction process in earthmoving operations. The simulation process is conducted on the CPNTools platform. The data required by the research were collected on-site in an actual case. The randomness of construction activities in earthmoving operations and main factors influencing construction are simulated. The sensitivity analysis for the model is carried out. The study will provide technical support and a management basis for equipment scheduling of earthmoving operations

    Kondo spin liquid and magnetically long-range ordered states in the Kondo necklace model

    Full text link
    A simplified version of the symmetric Kondo lattice model, the Kondo necklace model, is studied by using a representation of impurity and conduction electron spins in terms of local Kondo singlet and triplet operators. Within a mean field theory, a spin gap always appears in the spin triplet excitation spectrum in 1D, leading to a Kondo spin liquid state for any finite values of coupling strength t/Jt/J (with tt as hopping and JJ as exchange); in 2D and 3D cubic lattices the spin gaps are found to vanish continuously around (t/J)c0.70(t/J)_c\approx 0.70 and (t/J)c0.38(t/J)_c\approx 0.38, respectively, where quantum phase transitions occur and the Kondo spin liquid state changes into an antiferromagnetically long-range ordered state. These results are in agreement with variational Monte Carlo, higher-order series expansion, and recent quantum Monte Carlo calculations for the symmetric Kondo lattice modelComment: Revtex, four pages, three figures; to be published in Physical Review B1, 1 July (2000

    Finite temperature properties of the 2D Kondo lattice model

    Full text link
    Using recently developed Lanczos technique we study finite-temperature properties of the 2D Kondo lattice model at various fillings of the conduction band. At half filling the quasiparticle gap governs physical properties of the chemical potential and the charge susceptibility at small temperatures. In the intermediate coupling regime quasiparticle gap scales approximately linearly with Kondo coupling. Temperature dependence of the spin susceptibility reveals the existence of two different temperature scales. A spin gap in the intermediate regime leads to exponential drop of the spin susceptibility at low temperatures. Unusual scaling of spin susceptibility is found for temperatures above 0.6 J. Charge susceptibility at finite doping reveals existence of heavy quasiparticles. A new low energy scale is found at finite doping.Comment: REVTeX, 7 pages, 7 figure

    Brazil nut effect in annular containers

    Get PDF
    This paper investigates the motion of particles between two co-axial cylinders which are subjected to a sinusoidal vertical vibration. We measure the rising time of a large intruder from the bottom of the container to the free surface of the bed particles and find that the rising time as a function of intruder density decreases to a minimum and then increases monotonically. The result is qualitatively opposite to the previous findings in experiments using cylindrical containers where a maximal instead of minimal rising time in the small-density regime was found. The experimental results suggest that the topology of the container plays an important role in the Brazil nut effect

    Scattering of the halo nucleus 11Be from a lead target at 3.5 times the Coulomb barrier energy

    Get PDF
    Angular distributions of quasielastic scattering and breakup of the neutron-rich halo nucleus 11Be on a 208Pb target at an incident energy of 140 MeV (about 3.5 times the Coulomb barrier) were measured at HIRFL-RIBLL. A strong suppression of the Coulomb nuclear interference peak is observed in the measured quasielastic scattering angular distribution. The result demonstrates for the first time the persistence of the strong breakup coupling effect reported so far for reaction systems involving neutron-halo nuclei at this relatively high incident energy. The measured quasielastic scattering cross sections are satisfactorily reproduced by continuum discretized coupled channel (CDCC) calculations as well as by the XCDCC calculations where the deformation of the 10Be core is taken into account. The angular and energy distributions of the 10Be fragments could also be well reproduced considering elastic breakup (CDCC and XCDCC) plus nonelastic breakup contributions, with the latter evaluated with the model by Ichimura, Austern and Vincent [1]. The comparison of the 10Be energy distributions with simple kinematical estimates evidence the presence of a significant post-acceleration effect which, in the (X)CDCC frameworks, is accounted for by continuum-continuum couplings.National Key Research and Development Program of China (Grant No. 2018YFA0404403)National Natural Science Foundation of China (Grant No. 11775013, No. 11947203, No. 11575256, and No. U1632138)Youth Innovation Promotion Association CAS (No. 2020411)Ministerio de Ciencia, Innovación y Universidades FIS2017-88410-PEuropean Union’s Horizon 2020 (Grant Agreement No. 654002

    Predicting Neutron Production from Cosmic-ray Muons

    Get PDF
    Fast neutrons from cosmic-ray muons are an important background to underground low energy experiments. The estimate of such background is often hampered by the difficulty of measuring and calculating neutron production with sufficient accuracy. Indeed substantial disagreement exists between the different analytical calculations performed so far, while data reported by different experiments is not always consistent. We discuss a new unified approach to estimate the neutron yield, the energy spectrum, the multiplicity and the angular distribution from cosmic muons using the Monte Carlo simulation package FLUKA and show that it gives a good description of most of the existing measurements once the appropriate corrections have been applied.Comment: 8 pages, 7 figure

    On an Asymptotic Series of Ramanujan

    Get PDF
    An asymptotic series in Ramanujan's second notebook (Entry 10, Chapter 3) is concerned with the behavior of the expected value of ϕ(X)\phi(X) for large λ\lambda where XX is a Poisson random variable with mean λ\lambda and ϕ\phi is a function satisfying certain growth conditions. We generalize this by studying the asymptotics of the expected value of ϕ(X)\phi(X) when the distribution of XX belongs to a suitable family indexed by a convolution parameter. Examples include the problem of inverse moments for distribution families such as the binomial or the negative binomial.Comment: To appear, Ramanujan
    corecore