8 research outputs found

    An error tolerant memory aid for reduced cognitive load in number copying tasks

    Get PDF
    Number copying tasks are still common despite increased digitalization of services. Number copying tasks are cognitively and visually demanding, errors are easily introduced and the process is often perceived as laborious. This study proposes an alternative scheme based on dictionary coding that reduces the cognitive load on the user by a factor of five. The strategy has several levels of error detection and error correction characteristics and is easy to implemen

    A hybrid genetic algorithm applied to automatic parallel controller code generation

    No full text
    High performance real-time digital controllers employ parallel hardware such as transputers and digital signal processors to achieve short response times when this is not achievable with conventional uni-processor systems. Implementing such fine-grained parallel software is error-prone and difficult. We show how a hybrid genetic algorithm can be applied to automate this parallel code generation for a set of regular control problems such that significant speedup is obtained with few constraints on hardware. Genetic algorithms are particularly suited to this problem since the mapping problem is combinatorial in nature. However, one drawback of the genetic algorithm is that it is sensitive to small changes in the problem size. To overcome this problem the presented approach partitions the original problem into sub-problems, called boxes. The scheduling of these boxes is similar to the VLSI placement problem

    Portable multitrack audio storage strategy based on Reed Solomon codes

    No full text
    corecore