112 research outputs found
A review of factors which influence pedestrian use of the streets: Task 1 report for an EPSRC funded project on measuring pedestrian accessibility
INTRODUCTION
This document was written to report the results from Task 1 of the Measuring Pedestrian Accessibility project funded through the EPSRC Future Integrated Transport programme. The project is being carried out by staff at the Institute for Transport Studies (ITS) at the University of Leeds in collaboration with the Pedestrians Association and City of York Council.
The overall aim of this project is to identify ways to encourage and enable more people to make more journeys on foot. The specific objectives are to:
• quantify attitudes and perceptions held towards walking and the barriers to walking;
• study the feasibility of developing a tool that can be used to evaluate pedestrian routes;
• undertake validation of the tool.
The achievement of these objectives will represent a thorough investigation into the two sides of providing for walking - the physical environment for pedestrians and people's attitudes to walking.
Task 1 of the project is an extended literature review and survey of experts to identify an initial list of features that are thought to influence pedestrian use of the streets.
The paper that follows is split into a number of sections which look at the different characteristics of pedestrians, factors which affect route choice, factors which affect mode choice, problems faced by pedestrians on our streets and a short review of recent Government (local and national) policy which has influenced pedestrian provision
Fluctuations of an evaporating black hole from back reaction of its Hawking radiation: Questioning a premise in earlier work
This paper delineates the first steps in a systematic quantitative study of
the spacetime fluctuations induced by quantum fields in an evaporating black
hole. We explain how the stochastic gravity formalism can be a useful tool for
that purpose within a low-energy effective field theory approach to quantum
gravity. As an explicit example we apply it to the study of the
spherically-symmetric sector of metric perturbations around an evaporating
black hole background geometry. For macroscopic black holes we find that those
fluctuations grow and eventually become important when considering sufficiently
long periods of time (of the order of the evaporation time), but well before
the Planckian regime is reached. In addition, the assumption of a simple
correlation between the fluctuations of the energy flux crossing the horizon
and far from it, which was made in earlier work on spherically-symmetric
induced fluctuations, is carefully analyzed and found to be invalid. Our
analysis suggests the existence of an infinite amplitude for the fluctuations
of the horizon as a three-dimensional hypersurface. We emphasize the need for
understanding and designing operational ways of probing quantum metric
fluctuations near the horizon and extracting physically meaningful information.Comment: 10 pages, REVTeX; minor changes, a few references added and a brief
discussion of their relevance included. To appear in the proceedings of the
10th Peyresq meeting. Dedicated to Rafael Sorkin on the occasion of his 60th
birthda
Particle creation, classicality and related issues in quantum field theory: II. Examples from field theory
We adopt the general formalism, which was developed in Paper I
(arXiv:0708.1233) to analyze the evolution of a quantized time-dependent
oscillator, to address several questions in the context of quantum field theory
in time dependent external backgrounds. In particular, we study the question of
emergence of classicality in terms of the phase space evolution and its
relation to particle production, and clarify some conceptual issues. We
consider a quantized scalar field evolving in a constant electric field and in
FRW spacetimes which illustrate the two extreme cases of late time adiabatic
and highly non-adiabatic evolution. Using the time-dependent generalizations of
various quantities like particle number density, effective Lagrangian etc.
introduced in Paper I, we contrast the evolution in these two limits bringing
out key differences between the Schwinger effect and evolution in the de Sitter
background. Further, our examples suggest that the notion of classicality is
multifaceted and any one single criterion may not have universal applicability.
For example, the peaking of the phase space Wigner distribution on the
classical trajectory \emph{alone} does not imply transition to classical
behavior. An analysis of the behavior of the \emph{classicality parameter},
which was introduced in Paper I, leads to the conclusion that strong particle
production is necessary for the quantum state to become highly correlated in
phase space at late times.Comment: RevTeX 4; 27 pages; 18 figures; second of a series of two papers, the
first being arXiv:0708.1233 [gr-qc]; high resolution figures available from
the authors on reques
An Infrared Divergence Problem in the cosmological measure theory and the anthropic reasoning
An anthropic principle has made it possible to answer the difficult question
of why the observable value of cosmological constant (
GeV) is so disconcertingly tiny compared to predicted value of vacuum
energy density GeV. Unfortunately, there is a
darker side to this argument, as it consequently leads to another absurd
prediction: that the probability to observe the value for randomly
selected observer exactly equals to 1. We'll call this controversy an infrared
divergence problem. It is shown that the IRD prediction can be avoided with the
help of a Linde-Vanchurin {\em singular runaway measure} coupled with the
calculation of relative Bayesian probabilities by the means of the {\em
doomsday argument}. Moreover, it is shown that while the IRD problem occurs for
the {\em prediction stage} of value of , it disappears at the {\em
explanatory stage} when has already been measured by the observer.Comment: 9 pages, RevTe
Parity nonconserving cold neutron-parahydrogen interactions
Three pion dominated observables of the parity nonconserving interactions
between the cold neutrons and parahydrogen are calculated. The transversely
polarized neutron spin rotation, unpolarized neutron longitudinal polarization,
and photon-asymmetry of the radiative polarized neutron capture are considered.
For the numerical evaluation of the observables, the strong interactions are
taken into account by the Reid93 potential and the parity nonconserving
interactions by the DDH model along with the two-pion exchange.Comment: 17 pages, 2 figure
Noise Kernel and Stress Energy Bi-Tensor of Quantum Fields in Hot Flat Space and Gaussian Approximation in the Optical Schwarzschild Metric
Continuing our investigation of the regularization of the noise kernel in
curved spacetimes [N. G. Phillips and B. L. Hu, Phys. Rev. D {\bf 63}, 104001
(2001)] we adopt the modified point separation scheme for the class of optical
spacetimes using the Gaussian approximation for the Green functions a la
Bekenstein-Parker-Page. In the first example we derive the regularized noise
kernel for a thermal field in flat space. It is useful for black hole
nucleation considerations. In the second example of an optical Schwarzschild
spacetime we obtain a finite expression for the noise kernel at the horizon and
recover the hot flat space result at infinity. Knowledge of the noise kernel is
essential for studying issues related to black hole horizon fluctuations and
Hawking radiation backreaction. We show that the Gaussian approximated Green
function which works surprisingly well for the stress tensor at the
Schwarzschild horizon produces significant error in the noise kernel there. We
identify the failure as occurring at the fourth covariant derivative order.Comment: 21 pages, RevTeX
Mutation of Ser172 in Yeast β Tubulin Induces Defects in Microtubule Dynamics and Cell Division
Ser172 of β tubulin is an important residue that is mutated in a human brain disease and phosphorylated by the cyclin-dependent kinase Cdk1 in mammalian cells. To examine the role of this residue, we used the yeast S. cerevisiae as a model and produced two different mutations (S172A and S172E) of the conserved Ser172 in the yeast β tubulin Tub2p. The two mutants showed impaired cell growth on benomyl-containing medium and at cold temperatures, altered microtubule (MT) dynamics, and altered nucleus positioning and segregation. When cytoplasmic MT effectors Dyn1p or Kar9p were deleted in S172A and S172E mutants, cells were viable but presented increased ploidy. Furthermore, the two β tubulin mutations exhibited synthetic lethal interactions with Bik1p, Bim1p or Kar3p, which are effectors of cytoplasmic and spindle MTs. In the absence of Mad2p-dependent spindle checkpoint, both mutations are deleterious. These findings show the importance of Ser172 for the correct function of both cytoplasmic and spindle MTs and for normal cell division
From the Big Bang Theory to the Theory of a Stationary Universe
We consider chaotic inflation in the theories with the effective potentials
phi^n and e^{\alpha\phi}. In such theories inflationary domains containing
sufficiently large and homogeneous scalar field \phi permanently produce new
inflationary domains of a similar type. We show that under certain conditions
this process of the self-reproduction of the Universe can be described by a
stationary distribution of probability, which means that the fraction of the
physical volume of the Universe in a state with given properties (with given
values of fields, with a given density of matter, etc.) does not depend on
time, both at the stage of inflation and after it. This represents a strong
deviation of inflationary cosmology from the standard Big Bang paradigm. We
compare our approach with other approaches to quantum cosmology, and illustrate
some of the general conclusions mentioned above with the results of a computer
simulation of stochastic processes in the inflationary Universe.Comment: No changes to the file, but original figures are included. They
substantially help to understand this paper, as well as eternal inflation in
general, and what is now called the "multiverse" and the "string theory
landscape." High quality figures can be found at
http://www.stanford.edu/~alinde/LLMbigfigs
Expulsion of Magnetic Flux Lines from the Growing Superconducting Core of a Magnetized Quark Star
The expulsion of magnetic flux lines from a growing superconducting core of a
quark star has been investigated. The idea of impurity diffusion in molten
alloys and an identical mechanism of baryon number transport from hot
quark-gluon-plasma phase to hadronic phase during quark-hadron phase transition
in the early universe, micro-second after big bang has been used. The
possibility of Mullins-Sekerka normal-superconducting interface instability has
also been studied.Comment: Thoroughly revised version. Accepted for Astrophysics & Space Scienc
- …