22 research outputs found

    Microstructure and interfacial reactions during active metal brazing of stainless steel to titanium

    Get PDF
    Microstructural evolution and interfacial reactions during active metal vacuum brazing of Ti (grade-2) and stainless steel (SS 304L) using a Ag-based alloy containing Cu, Ti, and Al was investigated. A Ni-depleted solid solution layer and a discontinuous layer of (Ni,Fe)2TiAl intermetallic compound formed on the SS surface and adjacent to the SS-braze alloy interface, respectively. Three parallel contiguous layers of intermetallic compounds, CuTi, AgTi, and (Ag,Cu)Ti2, formed at the Ti-braze alloy interface. The diffusion path for the reaction at this interface was established. Transmission electron microscopy revealed formation of nanocrystals of Ag-Cu alloy of size ranging between 20 and 30 nm in the unreacted braze alloy layer. The interdiffusion zone of β-Ti(Ag,Cu) solid solution, formed on the Ti side of the joint, showed eutectoid decomposition to lamellar colonies of α-Ti and internally twinned (Cu,Ag)Ti2 inter- metallic phase, with an orientation relationship between the two. Bend tests indicated that the failure in the joints occurred by formation and propagation of the crack mostly along the Ti- braze alloy interface, through the (Ag,Cu)Ti2 phase layer

    Energy audit of three energy-conserving devices in a steel industry demonstration program. Task III. GTE high temperature recuperation

    No full text
    The Office of Industrial Programs of the Department of Energy has undertaken a program to demonstrate to industry the benefits of installing various energy-conserving devices and equipment. This report presents results on one of those systems, a high-temperature ceramic recuperator designed and manufactured by Sylvania Chemical and Metallurgical Division, GTE Products Corporation of Towanda, Pennsylvania. The ceramic cross-flow recuperator unit recovers waste heat from the hot combustion gases and delivers preheated air to high-temperature burners of various manufacture. Of the 38 host site installations included in the program, sufficient operating data were obtained from 28 sites to evaluate the benefits in terms of energy and economic savings that can be achieved. Performance and cost data are analyzed and presented for those 28 installations, which covered a variety of applications, sizes, and industry types. Except for 5 sites where unusual operating or data-collection problems were encountered, the improvements in performance of the recuperated furnaces equalled or exceeded estimates; the average of the total fuel savings for these 23 sites was 44.0 percent, some portion of which resulted from furnace improvements other than recuperation. Payback times were calculated for both total costs and for recuperator-related costs, using a cumulative annual after-tax cash flow method which includes tax investment credits, estimates of general and fuel-price inflation, and maintenance costs
    corecore