47 research outputs found
Analysis of Petri Net Models through Stochastic Differential Equations
It is well known, mainly because of the work of Kurtz, that density dependent
Markov chains can be approximated by sets of ordinary differential equations
(ODEs) when their indexing parameter grows very large. This approximation
cannot capture the stochastic nature of the process and, consequently, it can
provide an erroneous view of the behavior of the Markov chain if the indexing
parameter is not sufficiently high. Important phenomena that cannot be revealed
include non-negligible variance and bi-modal population distributions. A
less-known approximation proposed by Kurtz applies stochastic differential
equations (SDEs) and provides information about the stochastic nature of the
process. In this paper we apply and extend this diffusion approximation to
study stochastic Petri nets. We identify a class of nets whose underlying
stochastic process is a density dependent Markov chain whose indexing parameter
is a multiplicative constant which identifies the population level expressed by
the initial marking and we provide means to automatically construct the
associated set of SDEs. Since the diffusion approximation of Kurtz considers
the process only up to the time when it first exits an open interval, we extend
the approximation by a machinery that mimics the behavior of the Markov chain
at the boundary and allows thus to apply the approach to a wider set of
problems. The resulting process is of the jump-diffusion type. We illustrate by
examples that the jump-diffusion approximation which extends to bounded domains
can be much more informative than that based on ODEs as it can provide accurate
quantity distributions even when they are multi-modal and even for relatively
small population levels. Moreover, we show that the method is faster than
simulating the original Markov chain
Transient behavior in Single-File Systems
We have used Monte-Carlo methods and analytical techniques to investigate the
influence of the characteristics, such as pipe length, diffusion, adsorption,
desorption and reaction rates on the transient properties of Single-File
Systems. The transient or the relaxation regime is the period in which the
system is evolving to equilibrium. We have studied the system when all the
sites are reactive and when only some of them are reactive. Comparisons between
Mean-Field predictions, Cluster Approximation predictions, and Monte Carlo
simulations for the relaxation time of the system are shown. We outline the
cases where Mean-Field analysis gives good results compared to Dynamic
Monte-Carlo results. For some specific cases we can analytically derive the
relaxation time. Occupancy profiles for different distribution of the sites
both for Mean-Field and simulations are compared. Different results for slow
and fast reaction systems and different distribution of reactive sites are
discussed.Comment: 18 pages, 19 figure
Social and cultural origins of motivations to volunteer a comparison of university students in six countries
Although participation in volunteering and motivations to volunteer (MTV) have received substantial attention on the national level, particularly in the US, few studies have compared and explained these issues across cultural and political contexts. This study compares how two theoretical perspectives, social origins theory and signalling theory, explain variations in MTV across different countries. The study analyses responses from a sample of 5794 students from six countries representing distinct institutional contexts. The findings provide strong support for signalling theory but less so for social origins theory. The article concludes that volunteering is a personal decision and thus is influenced more at the individual level but is also impacted to some degree by macro-level societal forces
The handbook for standardised field and laboratory measurements in terrestrial climate-change experiments and observational studies
Climate change is a worldwide threat to biodiversity and ecosystem structure, functioning, and services. To understand the underlying drivers and mechanisms, and to predict the consequences for nature and people, we urgently need better understanding of the direction and magnitude of climateâchange impacts across the soilâplantâatmosphere continuum. An increasing number of climateâchange studies is creating new opportunities for meaningful and highâquality generalisations and improved process understanding. However, significant challenges exist related to data availability and/or compatibility across studies, compromising opportunities for data reâuse, synthesis, and upscaling. Many of these challenges relate to a lack of an established âbest practiceâ for measuring key impacts and responses. This restrains our current understanding of complex processes and mechanisms in terrestrial ecosystems related to climate change
Phase Behavior of Aqueous Na-K-Mg-Ca-CI-NO3 Mixtures: Isopiestic Measurements and Thermodynamic Modeling
A comprehensive model has been established for calculating thermodynamic properties of multicomponent aqueous systems containing the Na{sup +}, K{sup +}, Mg{sup 2+}, Ca{sup 2+}, Cl{sup -}, and NO{sub 3}{sup -} ions. The thermodynamic framework is based on a previously developed model for mixed-solvent electrolyte solutions. The framework has been designed to reproduce the properties of salt solutions at temperatures ranging from the freezing point to 300 C and concentrations ranging from infinite dilution to the fused salt limit. The model has been parameterized using a combination of an extensive literature database and new isopiestic measurements for thirteen salt mixtures at 140 C. The measurements have been performed using Oak Ridge National Laboratory's (ORNL) previously designed gravimetric isopiestic apparatus, which makes it possible to detect solid phase precipitation. Water activities are reported for mixtures with a fixed ratio of salts as a function of the total apparent salt mole fraction. The isopiestic measurements reported here simultaneously reflect two fundamental properties of the system, i.e., the activity of water as a function of solution concentration and the occurrence of solid-liquid transitions. The thermodynamic model accurately reproduces the new isopiestic data as well as literature data for binary, ternary and higher-order subsystems. Because of its high accuracy in calculating vapor-liquid and solid-liquid equilibria, the model is suitable for studying deliquescence behavior of multicomponent salt systems
A simple fluorescence-based cell viability assay for use in rat blood vessels in vitro
No abstract available
A simple fluorescence-based cell viability assay for use in rat blood vessels in vitro
No abstract available