706 research outputs found

    Proteomic and functional analyses of the virion transmembrane proteome of cyprinid herpesvirus 3

    Get PDF
    Virion transmembrane proteins (VTPs) mediate key functions in the herpesvirus infectious cycle. Cyprinid herpesvirus 3 (CyHV-3) is the archetype of fish alloherpesviruses. The present study was devoted to CyHV-3 VTPs. Using mass spectrometry approaches, we identified 16 VTPs of the CyHV-3 FL strain. Mutagenesis experiments demonstrated that eight of these proteins are essential for viral growth in vitro (ORF32, ORF59, ORF81, ORF83, ORF99, ORF106, ORF115, and ORF131), and eight are non-essential (ORF25, ORF64, ORF65, ORF108, ORF132, ORF136, ORF148, and ORF149). Among the non-essential proteins, deletion of ORF25, ORF132, ORF136, ORF148, or ORF149 affects viral replication in vitro, and deletion of ORF25, ORF64, ORF108, ORF132, or ORF149 impacts plaque size. Lack of ORF148 or ORF25 causes attenuation in vivo to a minor or major extent, respectively. The safety and efficacy of a virus lacking ORF25 were compared to those of a previously described vaccine candidate deleted for ORF56 and ORF57 (Δ56-57). Using quantitative PCR, we demonstrated that the ORF25 deleted virus infects fish through skin infection and then spreads to internal organs as reported previously for the wild-type parental virus and the Δ56-57 virus. However, compared to the parental wild-type virus, the replication of the ORF25 deleted virus was reduced in intensity and duration to levels similar to those observed for the Δ56-57 virus. Vaccination of fish with a virus lacking ORF25 was safe but had low efficacy at the doses tested. This characterization of the virion transmembrane proteome of CyHV-3 provides a firm basis for further research on alloherpesvirus VTPs. IMPORTANCE Virion transmembrane proteins play key roles in the biology of herpesviruses. Cyprinid herpesvirus 3 (CyHV-3) is the archetype of fish alloherpesviruses and the causative agent of major economic losses in common and koi carp worldwide. In this study of the virion transmembrane proteome of CyHV-3, the major findings were: (i) the FL strain encodes 16 virion transmembrane proteins; (ii) eight of these proteins are essential for viral growth in vitro; (iii) seven of the non-essential proteins affect viral growth in vitro, and two affect virulence in vivo; and (iv) a mutant lacking ORF25 is highly attenuated but induces moderate immune protection. This study represents a major breakthrough in understanding the biology of CyHV-3 and will contribute to the development of prophylactic methods. It also provides a firm basis for the further research on alloherpesvirus virion transmembrane proteins

    Random Exchange Disorder in the Spin-1/2 XXZ Chain

    Full text link
    The one-dimensional XXZ model is studied in the presence of disorder in the Heisenberg Exchange Integral. Recent predictions obtained from renormalization group calculations are investigated numerically using a Lanczos algorithm on chains of up to 18 sites. It is found that in the presence of strong X-Y-symmetric random exchange couplings, a ``random singlet'' phase with quasi-long-range order in the spin-spin correlations persists. As the planar anisotropy is varied, the full zero-temperature phase diagram is obtained and compared with predictions of Doty and Fisher [Phys. Rev. B {\bf 45 }, 2167 (1992)].Comment: 9 pages + 8 plots appended, RevTex, FSU-SCRI-93-98 and ORNL/CCIP/93/1

    Optimisation and characterisation of graphene-based microporous layers for polymer electrolyte membrane fuel cells

    Get PDF
    The viability of graphene-based microporous layers (MPLs) for polymer electrolyte membrane fuel cells is critically assessed through detailed characterisation of the morphology, microstructure, transport properties and electrochemical characterisation. Microporous layer composition was optimised by the fabrication of several hybrid MPLs produced from various ratios of graphene to Vulcan carbon black. Single cell tests were performed at various relative humidities between 25% and 100% at 80 °C, in order to provide a detailed understanding of the effect of the graphene-based MPL composition on the fuel cell performance. The inclusion of graphene in the MPL alters the pores size distribution of the layer and results in presence of higher amount of mesopores. Polarisation curves indicate that a small addition of graphene (i.e. 30 wt %) in the microporous layer improves the fuel cell performance under low humidity conditions (e.g. 25% relative humidity). On the other hand, under high humidity conditions (≥50% relative humidity), adding higher amounts of graphene (≥50 wt %) improves the fuel cell performance as it creates a good amount of mesopores required to drive excess water away from the cathode electrode, particularly when operating with high current densities

    Disorder Induced Phases in Higher Spin Antiferromagnetic Heisenberg Chains

    Full text link
    Extensive DMRG calculations for spin S=1/2 and S=3/2 disordered antiferromagnetic Heisenberg chains show a rather distinct behavior in the two cases. While at sufficiently strong disorder both systems are in a random singlet phase, we show that weak disorder is an irrelevant perturbation for the S=3/2 chain, contrary to what expected from a naive application of the Harris criterion. The observed irrelevance is attributed to the presence of a new correlation length due to enhanced end-to-end correlations. This phenomenon is expected to occur for all half-integer S > 1/2 chains. A possible phase diagram of the chain for generic S is also discussed.Comment: 6 Pages and 6 figures. Final version as publishe

    Properties of charmed and bottom hadrons in nuclear matter: A plausible study

    Get PDF
    Changes in properties of heavy hadrons with a charm or a bottom quark are studied in nuclear matter. Effective masses (scalar potentials) for the hadrons are calculated using quark-meson coupling model. Our results also suggest that the heavy baryons containing a charm or a bottom quark will form charmed or bottom hypernuclei, which was first predicted in mid 70's. In addition a possibility of BB^--nuclear bound (atomic) states is briefly discussed.Comment: Latex, 11 pages, 3 figures, text was expanded substantially, version to appear in Phys. Lett.

    CMB polarization from secondary vector and tensor modes

    Get PDF
    We consider a novel contribution to the polarization of the Cosmic Microwave Background induced by vector and tensor modes generated by the non-linear evolution of primordial scalar perturbations. Our calculation is based on relativistic second-order perturbation theory and allows to estimate the effects of these secondary modes on the polarization angular power-spectra. We show that a non-vanishing B-mode polarization unavoidably arises from pure scalar initial perturbations, thus limiting our ability to detect the signature of primordial gravitational waves generated during inflation. This secondary effect dominates over that of primordial tensors for an inflationary tensor-to-scalar ratio r<106r<10^{-6}. The magnitude of the effect is smaller than the contamination produced by the conversion of polarization of type E into type B, by weak gravitational lensing. However the lensing signal can be cleaned, making the secondary modes discussed here the actual background limiting the detection of small amplitude primordial gravitational waves.Comment: 14 pages, 3 figures, minor changes matching the version to be published in Phys. Rev.

    Curved Tails in Polymerization-Based Bacterial Motility

    Full text link
    The curved actin ``comet-tail'' of the bacterium Listeria monocytogenes is a visually striking signature of actin polymerization-based motility. Similar actin tails are associated with Shigella flexneri, spotted-fever Rickettsiae, the Vaccinia virus, and vesicles and microspheres in related in vitro systems. We show that the torque required to produce the curvature in the tail can arise from randomly placed actin filaments pushing the bacterium or particle. We find that the curvature magnitude determines the number of actively pushing filaments, independent of viscosity and of the molecular details of force generation. The variation of the curvature with time can be used to infer the dynamics of actin filaments at the bacterial surface.Comment: 8 pages, 2 figures, Latex2

    Measurements of J/psi Decays into 2(pi+pi-)eta and 3(pi+pi-)eta

    Full text link
    Based on a sample of 5.8X 10^7 J/psi events taken with the BESII detector, the branching fractions of J/psi--> 2(pi+pi-)eta and J/psi-->3(pi+pi-)eta are measured for the first time to be (2.26+-0.08+-0.27)X10^{-3} and (7.24+-0.96+-1.11)X10^{-4}, respectively.Comment: 11 pages, 6 figure

    BESII Detector Simulation

    Full text link
    A Monte Carlo program based on Geant3 has been developed for BESII detector simulation. The organization of the program is outlined, and the digitization procedure for simulating the response of various sub-detectors is described. Comparisons with data show that the performance of the program is generally satisfactory.Comment: 17 pages, 14 figures, uses elsart.cls, to be submitted to NIM

    Measurement of branching fractions for the inclusive Cabibbo-favored ~K*0(892) and Cabibbo-suppressed K*0(892) decays of neutral and charged D mesons

    Full text link
    The branching fractions for the inclusive Cabibbo-favored ~K*0 and Cabibbo-suppressed K*0 decays of D mesons are measured based on a data sample of 33 pb-1 collected at and around the center-of-mass energy of 3.773 GeV with the BES-II detector at the BEPC collider. The branching fractions for the decays D+(0) -> ~K*0(892)X and D0 -> K*0(892)X are determined to be BF(D0 -> \~K*0X) = (8.7 +/- 4.0 +/- 1.2)%, BF(D+ -> ~K*0X) = (23.2 +/- 4.5 +/- 3.0)% and BF(D0 -> K*0X) = (2.8 +/- 1.2 +/- 0.4)%. An upper limit on the branching fraction at 90% C.L. for the decay D+ -> K*0(892)X is set to be BF(D+ -> K*0X) < 6.6%
    corecore