4,906 research outputs found

    Scale dependence of cosmological backreaction

    Full text link
    Due to the non-commutation of spatial averaging and temporal evolution, inhomogeneities and anisotropies (cosmic structures) influence the evolution of the averaged Universe via the cosmological backreaction mechanism. We study the backreaction effect as a function of averaging scale in a perturbative approach up to higher orders. We calculate the hierarchy of the critical scales, at which 10% effects show up from averaging at different orders. The dominant contribution comes from the averaged spatial curvature, observable up to scales of 200 Mpc. The cosmic variance of the local Hubble rate is 10% (5%) for spherical regions of radius 40 (60) Mpc. We compare our result to the one from Newtonian cosmology and Hubble Space Telescope Key Project data.Comment: 6 pages, 2 figures; v3: substantial modifications, new figure

    Whether co-administration of garlic has negative influence on Scutellaria baicalensis georgi in treating models rats with pelvic inflammation?

    Get PDF
    The research was to explore whether co-administration of garlic has negative influence on Scutellaria baicalensis Georgi (Scutellaria baicalensis) in treating models rats with pelvic inflammation. Twelve model rats were randomized into a Scutellaria baicalensis group and a Scutellaria baicalensis+garlic group with six in each group for pharmacokinetic analysis. Twenty-four rats were randomized into a Scutellaria baicalensis group, a Scutellaria baicalensis+garlic group, a model control group and a normal control group with six rats in each group for detecting the serum levels of tumor necrosis factor-alpha (TNF-α) and interleukin 6 (IL-6) with enzyme-linked immunosorbent assay (ELISA). The results showed that in the Scutellaria baicalensis group, the maximum concentration (Cmax) of baicalin, area under the plasma concentration–time curve (AUC) and the time to Cmax (Tmax) were significantly higher and apparent clearance (CL/F) were significantly lower than those of Scutellaria baicalensis+garlic group. The serum levels of TNF-α and IL-6 in the Scutellaria baicalensis group were both significantly lower than Scutellaria baicalensis+garlic group. It was then concluded that garlic not only had negative influence on the absorption of active compounds in Scutellaria baicalensis, but decreased the curative effects of Scutellaria baicalensis in treating model rats with pelvic inflammation. Garlic should not be co-administered with Scutellaria baicalensis.Key words: Scutellaria baicalensis Georgi(Scutellaria baicalensi); garlic (Allium sativum); pharmacokinetics analysi

    Le bestiaire aurevillien dans Le Chevalier Des Touches

    Get PDF

    Constraints on Cosmological Models and Reconstructing the Acceleration History of the Universe with Gamma-Ray Burst Distance Indicators

    Full text link
    Gamma-ray bursts (GRBs) have been regarded as standard candles at very high redshift for cosmology research. We have proposed a new method to calibrate GRB distance indicators with Type Ia supernova (SNe Ia) data in a completely cosmology-independent way to avoid the circularity problem that had limited the direct use of GRBs to probe cosmology [N. Liang, W. K. Xiao, Y. Liu, and S. N. Zhang, Astrophys. J. 685, 354 (2008).]. In this paper, a simple method is provided to combine GRB data into the joint observational data analysis to constrain cosmological models; in this method those SNe Ia data points used for calibrating the GRB data are not used to avoid any correlation between them. We find that the Λ\LambdaCDM model is consistent with the joint data in the 1-σ\sigma confidence region, using the GRB data at high redshift calibrated with the interpolating method, the Constitution set of SNe Ia, the cosmic microwave background radiation from Wilkinson Microwave Anisotropy Probe five year observation, the baryonic acoustic oscillation from the spectroscopic Sloan Digital Sky Survey Data Release 7 galaxy sample, the x-ray baryon mass fraction in clusters of galaxies, and the observational Hubble parameter versus redshift data. Comparing to the joint constraints with GRBs and without GRBs, we find that the contribution of GRBs to the joint cosmological constraints is a slight shift in the confidence regions of cosmological parameters to better enclose the Λ\LambdaCDM model. Finally, we reconstruct the acceleration history of the Universe up to z>6z>6 with the distance moduli of SNe Ia and GRBs and find some features that deviate from the Λ\LambdaCDM model and seem to favor oscillatory cosmology models; however further investigations are needed to better understand the situation.Comment: 14 pages, 9 figures, 2 tables; v3: the revised version, fig. 6 and some discussions added, accepted for for publication in Phys. Rev. D; v4: the published version (Phys. Rev. D 81, 083518, 2010

    Phase Change Observed in Ultrathin Ba0.5Sr0.5TiO3 Films by in-situ Resonant Photoemission Spectroscopy

    Full text link
    Epitaxial Ba0.5Sr0.5TiO3 thin films were prepared on Nb-doped SrTiO3 (100)substrates by the pulsed laser deposition technique, and were studied by measuring the Ti 2p - 3d resonant photoemission spectra in the valence-band region as a function of film thickness, both at room temperature and low temperature. Our results demonstrated an abrupt variation in the spectral structures between 2.8 nm (~7 monolayers) and 2.0 nm (~5 monolayers) Ba0.5Sr0.5TiO3 films, suggesting that there exists a critical thickness for phase change in the range of 2.0 nm to 2.8 nm. This may be ascribed mainly to the intrinsic size effects.Comment: 13 pages, 4 figure

    On the Solution to the "Frozen Star" Paradox, Nature of Astrophysical Black Holes, non-Existence of Gravitational Singularity in the Physical Universe and Applicability of the Birkhoff's Theorem

    Full text link
    Oppenheimer and Snyder found in 1939 that gravitational collapse in vacuum produces a "frozen star", i.e., the collapsing matter only asymptotically approaches the gravitational radius (event horizon) of the mass, but never crosses it within a finite time for an external observer. Based upon our recent publication on the problem of gravitational collapse in the physical universe for an external observer, the following results are reported here: (1) Matter can indeed fall across the event horizon within a finite time and thus BHs, rather than "frozen stars", are formed in gravitational collapse in the physical universe. (2) Matter fallen into an astrophysical black hole can never arrive at the exact center; the exact interior distribution of matter depends upon the history of the collapse process. Therefore gravitational singularity does not exist in the physical universe. (3) The metric at any radius is determined by the global distribution of matter, i.e., not only by the matter inside the given radius, even in a spherically symmetric and pressureless gravitational system. This is qualitatively different from the Newtonian gravity and the common (mis)understanding of the Birkhoff's Theorem. This result does not contract the "Lemaitre-Tolman-Bondi" solution for an external observer.Comment: 8 pages, 4 figures, invited plenary talk at "The first Galileo-Xu Guangqi conference", Shanghai, China, 2009. To appear in International Journal of Modern Physics D (2010

    Interaction of Gold Nanoparticles in Barium Titanate Thin Films

    Full text link
    A novel approach to control the grain size of oxide thin film materials has been investigated. Perovskite BaTiO3 shows interesting grain structures when deposited on gold predeposited, (111)-oriented, singlecrystal SrTiO3 substrates. Solid oxide films grow epitaxially on patterned seed layers and show variations in grain size relative to the films deposited on SrTiO3 directly.Comment: 14 pages, 4 figure
    • …
    corecore