27,688 research outputs found

    Considerations about Continuous Experimentation for Resource-Constrained Platforms in Self-Driving Vehicles

    Full text link
    Autonomous vehicles are slowly becoming reality thanks to the efforts of many academic and industrial organizations. Due to the complexity of the software powering these systems and the dynamicity of the development processes, an architectural solution capable of supporting long-term evolution and maintenance is required. Continuous Experimentation (CE) is an already increasingly adopted practice in software-intensive web-based software systems to steadily improve them over time. CE allows organizations to steer the development efforts by basing decisions on data collected about the system in its field of application. Despite the advantages of Continuous Experimentation, this practice is only rarely adopted in cyber-physical systems and in the automotive domain. Reasons for this include the strict safety constraints and the computational capabilities needed from the target systems. In this work, a concept for using Continuous Experimentation for resource-constrained platforms like a self-driving vehicle is outlined.Comment: Copyright 2017 Springer. Paper submitted and accepted at the 11th European Conference on Software Architecture. 8 pages, 1 figure. Published in Lecture Notes in Computer Science vol 10475 (Springer), https://link.springer.com/chapter/10.1007/978-3-319-65831-5_

    Attempts to detect retrotransposition and de novo deletion of Alus and other dispersed repeats at specific loci in the human genome

    Get PDF
    Dispersed repeat elements contribute to genome instability by de novo insertion and unequal recombination between repeats. To study the dynamics of these processes, we have developed single DNA molecule approaches to detect de novo insertions at a single locus and Alu-mediated deletions at two different loci in human genomic DNA. Validation experiments showed these approaches could detect insertions and deletions at frequencies below 10(-6) per cell. However, bulk analysis of germline (sperm) and somatic DNA showed no evidence for genuine mutant molecules, placing an upper limit of insertion and deletion rates of 2 x 10(-7) and 3 x 10(-7), respectively, in the individuals tested. Such re-arrangements at these loci therefore occur at a rate lower than that detectable by the most sensitive methods currently available

    Application of a basic monitoring strategy for Cryptosporidium and Giardia in drinking water

    Get PDF
    Despite the health risks associated with exposure to Cryptosporidium and Giardia, there is no uniform approach to monitoring these protozoan parasites across the world. In the present study, a strategy for monitoring Cryptosporidium and Giardia in drinking water was developed in an effort to ensure that the risk of exposure to these organisms and the risks of non-compliance to guidelines are reduced. The methodology developed will be applicable to all water supply systems irrespective of size and complexity of the purification works. It is based on monitoring procedures proposed by the US Environmental Protection Agency, the Drinking Water Inspectorate, Australia and New Zealand, as well as the risk-based procedure followed by Northern Ireland. The monitoring strategy developed represents a preventative approach for proactively monitoring Cryptosporidium and Giardia species in drinking water. The strategy consists of 10 steps: (i) assessment of the monitoring requirements, (ii) description and characterisation of the source water types, (iii) abstraction of source water, (iv) assessment of the water purification plant, (v) water quality monitoring, (vi) cryptosporidiosis and giardiasis outbreak, (vii) risk assessment, (viii) sample collection and laboratory processing, (ix) data evaluation, interpretation and storage, (x) process evaluation and review. Proper implementation of this protocol can contribute to the protection of drinking water consumers by identifying high-risk source water, identifying areas of improvement within the water treatment system, and also preventing further faecal pollution in the catchments. The protocol can also be integrated into the Water Safety Plans to optimise compliance. Furthermore, this methodology has a potential to contribute to Blue Drop certification as it should form part of the incident management protocols which are a requirement of Water Safety Plan implementation.Keywords: Cryptosporidium, Giardia, monitoring, risk score, drinking wate

    Sequence analysis of coding and 3' and 5' flanking regions of the epithelial sodium channel α, β, and γ genes in Dahl S versus R rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To test whether epithelial sodium channel (ENaC) genes' variants contribute to salt sensitive hypertension in Dahl rats, we screened ENaC α, β, and γ genes entire coding regions, intron-exon junctions, and the 3' and 5' flanking regions in Dahl S, R and Wistar rats using both Denaturing High Performance Liquid Chromatography (DHPLC) and sequencing.</p> <p>Results</p> <p>Our analysis revealed no sequence variability in the three genes encoding ENaC in Dahl S <it>versus </it>R rats. One homozygous sequence variation predicted to result in a D75E substitution was identified in Dahl and Wistar rat ENaC α compared to Brown Norway. Six and two previously reported polymorphic sites in Brown Norway sequences were lost in Dahl and Wistar rats, respectively. In the 5' flanking regions, we found a deletion of 5GCTs in Dahl and Wistar rat ENaC α gene, five new polymorphic sites in ENaC β and γ genes, one homozygous sequence variation in Dahl and Wistar rat ENaC γ gene, as well as one Dahl rat specific homozygous insertion of -1118CCCCCA in ENaC γ gene. This insertion created additional binding sites for Sp1 and Oct-1. Five and three Brown Norway polymorphic sites were lost in Dahl and Wistar rats, respectively. No sequence variability in ENaC 3' flanking regions was identified in Dahl compared to Brown Norway rats.</p> <p>Conclusion</p> <p>The first comprehensive sequence analysis of ENaC genes did not reveal any differences between Dahl S and R rats that were isogenic in the regions screened. Mutations in ENaC genes intronic sequence or in ENaC-regulatory genes might possibly account for increased ENaC activity in Dahl S <it>versus </it>R rats.</p

    Roles of polyurethane foam in aerobic moving and fixed bed bioreactors

    Full text link
    The aim of this study was to investigate the performance of sponge as an active mobile carrier for attachedgrowth biomass in three typical types of aerobic bioreactors to treat a high strength synthetic wastewater. The results show that sponge thickness deteriorated the organic and nutrient removal and 1 cm is the optimumthickness for fixed-bed sponge biofilter (SBF). The sponge volume had significant impact on phosphorus removal rather than organic or nitrogen removal, and 20% volume of sponge could achieve 100% T-P removal within 3 h in a sponge batch reactor (SBR). When sponge coupled with submerged membrane bioreactor (SMBR), the single system show outstanding ammonium (100% at filtration flux of 10 and 15 L/m2 h) and phosphorus (>91% at all fluxes range) removal with optimum pH range of 6-7. © 2009 Elsevier Ltd

    The two-component Beta-t-QVAR-M-lev: a new forecasting model

    Get PDF
    We introduce a new joint model of expected return and volatility forecasting, namely the two-component Beta-t-QVAR-M-lev (quasi-vector autoregression in-mean with leverage). The maximum likelihood estimator for the two-component Beta-t-QVAR-M-lev is an extension of theoretical results of the one-component Beta-t-QVAR-M. We compare the volatility forecasting performance of the two-component Beta-t-QVAR-M-lev and two-component GARCH-M (generalized autoregressive conditional heteroscedasticity), also considering their one-component frameworks. The results for G20 stock market indices indicate that the forecasting performance of the two-component Beta-t-QVAR-M-lev is superior compared with the two-component GARCH-M and their one-component versions

    CD4 T lymphocyte autophagy is upregulated in the salivary glands of primary Sjögren’s syndrome patients and correlates with focus score and disease activity

    Get PDF
    Background: Primary Sjögren’s syndrome (pSS) is a common chronic autoimmune disease characterized by lymphocytic infiltration of exocrine glands and peripheral lymphocyte perturbation. In the current study, we aimed to investigate the possible pathogenic implication of autophagy in T lymphocytes in patients with pSS. Methods: Thirty consecutive pSS patients were recruited together with 20 patients affected by sicca syndrome a nd/or chronic sialoadenitis and 30 healthy controls. Disease activity and damage were evaluated according to SS disease activity index, EULAR SS disease activity index, and SS disease damage index. T lymphocytes were analyzed for the expression of autophagy-specific markers by biochemical, molecular, and histological assays in peripheral blood and labial gland biopsies. Serum interleukin (IL)-23 and IL-21 levels were quantified by enzyme-linked immunosorbent assay. Results: Our study provides evidence for the first time that autophagy is upregulated in CD4+ T lymphocyte salivary glands from pSS patients. Furthermore, a statistically significant correlation was detected between lymphocyte autophagy levels, disease activity, and damage indexes. We also found a positive correlation between autophagy enhancement and the increased salivary gland expression of IL-21 and IL-23, providing a further link between innate and adaptive immune responses in pSS. Conclusions: These findings suggest that CD4+ T lymphocyte autophagy could play a key role in pSS pathogenesis. Additionally, our data highlight the potential exploitation of T cell autophagy as a biomarker of disease activity and provide new ground to verify the therapeutic implications of autophagy as an innovative drug target in pSS
    • …
    corecore