7,197 research outputs found
Combustion in thermonuclear supernova explosions
Type Ia supernovae are associated with thermonuclear explosions of white
dwarf stars. Combustion processes convert material in nuclear reactions and
release the energy required to explode the stars. At the same time, they
produce the radioactive species that power radiation and give rise to the
formation of the observables. Therefore, the physical mechanism of the
combustion processes, as reviewed here, is the key to understand these
astrophysical events. Theory establishes two distinct modes of propagation for
combustion fronts: subsonic deflagrations and supersonic detonations. Both are
assumed to play an important role in thermonuclear supernovae. The physical
nature and theoretical models of deflagrations and detonations are discussed
together with numerical implementations. A particular challenge arises due to
the wide range of spatial scales involved in these phenomena. Neither the
combustion waves nor their interaction with fluid flow and instabilities can be
directly resolved in simulations. Substantial modeling effort is required to
consistently capture such effects and the corresponding techniques are
discussed in detail. They form the basis of modern multidimensional
hydrodynamical simulations of thermonuclear supernova explosions. The problem
of deflagration-to-detonation transitions in thermonuclear supernova explosions
is briefly mentioned.Comment: Author version of chapter for 'Handbook of Supernovae,' edited by A.
Alsabti and P. Murdin, Springer. 24 pages, 4 figure
Uji Aktivitas Antioksidan Pada Modifikasi Senyawa Khrisin Dengan Gugus Alkoksi Menggunakan Metode Recife Model 1 (Rm1)
Senyawa khrisin yang biasa terdapat pada madu dan parsley memiliki aktivitas antioksidan lebih rendah dari pada senyawa turunan flavon/flavonol yang lain. Oleh karena itu perlu adanya modifikasi senyawa khrisin agar diperoleh senyawa baru yang memiliki aktivitas antioksidan yang lebih tinggi dari senyawa khrisin awal. Penelitian ini bertujuan untuk mengetahui senyawa hasil modifikasi khrisin yang memiliki aktivitas antioksidan yang lebih baik dari senyawa khrisin serta mengetahui faktor yang mempengaruhi aktivitas antioksidan. Deskriptor molekuler dari senyawa turunan flavon/flavonol dan modifikasi senyawa khrisin telah dibuat dengan bantuan perhitungan RM1, dan optimasi geometri dilakukan menggunakan Hyperchem 8.0.7. Analisis korelasi dan regresi multilinier dilakukan menggunakan program SPSS® for Windows versi 16.0. Hasil korelasi menunjukkan bahwa parameter momen dipol paling berpengaruh terhadap aktivitas antioksidan. Momen dipol, energi ikat, dan energi elektronik digunakan untuk Analisis Kuantitatif Struktur-Aktivitas (HKSA). Hasilnya sangat memuaskan karena memiliki nilai R sebesar 0,924 dan R2 sebesar 0,854. Prediksi aktivitas antioksidan dihitung menggunakan Multiple Regression Calculator. Aktivitas antioksidan dapat menurun dengan penambahan gugus yang memiliki lebih banyak karbon dan keruahan molekul tinggi. Modifikasi senyawa khrisin yang memiliki aktivitas antioksidan prediksi lebih tinggi dari yaitu : senyawa 5,7-dihidroksi-3-metoksi flavon dan 5,7-dihidroksi-8-metoksi flavon, dengan nilai aktivitas antioksidan prediksi masing-masing sebesar -2,6735 dan -2,6121.Khrisin compounds commonly found in honey and parsley have lower antioxidant activity than flavones / flavonols derivatives. Hence, it is need for modification of khrisin compounds in order to obtain new compounds which have a higher antioxidant activity than the initial khrisin compound. This study aims to determine khrisin modified compounds that have antioxidant activity which is better than khrisin compounds and to know the factors that influence the activity of antioxidants. Molecular descriptors of flavone / flavonols derivatives and khrisin compounds modifications have been made with the help of RM1 calculation and geometry optimization was performed using Hyperchem 8.0.7. Multilinier correlation and regression analysis was performed using SPSS® program for Windows version 16.0. Correlation results showed that the most influential parameters were the dipole moment of antioxidant activity. Dipole moment, binding energy and electronic energy used for Quantitative Structure-Activity QSAR analysis. The result is very satisfying because it has the R value of 0.924 and R2 0,854. Prediction of antioxidant activity was calculated using Multiple Regression Calculator. Antioxidant activity can be decreased by adding the group which has more carbon and high molecular bulk. Modifications of khrisin compounds that have antioxidant activity prediction is higher than that is: the compound 5,7-dihydroxy-3-methoxy and 5,7-dihydroxy flavone-8-methoxy flavonoids, with antioxidant activity predictive value of each -2.6735 and -2.6121
A Fuzzy Predictable Load Balancing Approach in Cloud Computing
Cloud computing is a new paradigm for hosting and delivering services on demand over the internet where users access services. It is an example of an ultimately virtualized system, and a natural evolution for data centers that employ automated systems management, workload balancing, and virtualization technologies. Live virtual machine (VM) migration is a technique to achieve load balancing in cloud environment by transferring an active overload VM from one physical host to another one without disrupting the VM. In this study, to eliminate whole VM migration in load balancing process, we propose a Fuzzy Predictable Load Balancing (FPLB) approach which confronts with the problem of overload VM, by assigning the extra tasks from overloaded VM to another similar VM instead of whole VM migration. In addition, we propose a Fuzzy Prediction Method (FPM) to predict VMs migration time. This approach also contains a multi-objective optimization model to migrate these tasks to a new VM host. In proposed FPLB approach there is no need to pause VM during migration time. Furthermore, considering this fact that VM live migration contrast to tasks migration takes longer to complete and needs more idle capacity in host physical machine (PM), the proposed approach will significantly reduce time, idle memory and cost consumption
Evolutionary algorithm-based multi-objective task scheduling optimization model in cloud environments
© 2015, Springer Science+Business Media New York. Optimizing task scheduling in a distributed heterogeneous computing environment, which is a nonlinear multi-objective NP-hard problem, plays a critical role in decreasing service response time and cost, and boosting Quality of Service (QoS). This paper, considers four conflicting objectives, namely minimizing task transfer time, task execution cost, power consumption, and task queue length, to develop a comprehensive multi-objective optimization model for task scheduling. This model reduces costs from both the customer and provider perspectives by considering execution and power cost. We evaluate our model by applying two multi-objective evolutionary algorithms, namely Multi-Objective Particle Swarm Optimization (MOPSO) and Multi-Objective Genetic Algorithm (MOGA). To implement the proposed model, we extend the Cloudsim toolkit by using MOPSO and MOGA as its task scheduling algorithms which determine the optimal task arrangement among VMs. The simulation results show that the proposed multi-objective model finds optimal trade-off solutions amongst the four conflicting objectives, which significantly reduces the job response time and makespan. This model not only increases QoS but also decreases the cost to providers. From our experimentation results, we find that MOPSO is a faster and more accurate evolutionary algorithm than MOGA for solving such problems
Estimating black hole masses of blazars
Estimating black hole masses of blazars is still a big challenge. Because of
the contamination of jets, using the previously suggested size -- continuum
luminosity relation can overestimate the broad line region (BLR) size and black
hole mass for radio-loud AGNs, including blazars. We propose a new relation
between the BLR size and emission line luminosity and present
evidences for using it to get more accurate black hole masses of radio-loud
AGNs. For extremely radio-loud AGNs such as blazars with weak/absent emission
lines, we suggest to use the fundamental plane relation of their elliptical
host galaxies to estimate the central velocity dispersions and black hole
masses, if their velocity dispersions are not known but the host galaxies can
be mapped. The black hole masses of some well-known blazars, such as OJ 287, AO
0235+164 and 3C 66B, are obtained using these two methods and the M -
relation. The implications of their black hole masses on other related studies
are also discussed.Comment: 7 pages, invited talk presented in the workshop on Multiwavelength
Variability of Blazars (Guangzhou, China, Sept. 22-24, 2010). To be published
in the Journal of Astrophysics and Astronom
CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis
Macrophages abundantly found in the tumor microenvironment enhance malignancy(1). At metastatic sites a distinct population of metastasis associated macrophages (MAMs) promote tumor cell extravasation, seeding and persistent growth(2). Our study has defined the origin of these macrophages by showing Gr1+ inflammatory monocytes (IMs) are preferentially recruited to pulmonary metastases but not primary mammary tumors, a process also found for human IMs in pulmonary metastases of human breast cancer cells. The recruitment of these CCR2 (receptor for chemokine CCL2) expressing IMs and subsequently MAMs and their interaction with metastasizing tumor cells is dependent on tumor and stromal synthesized CCL2 (FigS1). Inhibition of CCL2/CCR2 signaling using anti-CCL2 antibodies blocks IM recruitment and inhibits metastasis in vivo and prolongs the survival of tumor-bearing mice. Depletion of tumor cell-derived CCL2 also inhibits metastatic seeding. IMs promote tumor cell extravasation in a process that requires monocyte-derived VEGF. CCL2 expression and macrophage infiltration are correlated with poor prognosis and metastatic disease in human breast cancer (Fig S2)(3-6). Our data provides the mechanistic link between these two clinical associations and indicates new therapeutic targets for treating metastatic breast disease
P-rex1 cooperates with PDGFRβ to drive cellular migration in 3D microenvironments
Expression of the Rac-guanine nucleotide exchange factor (RacGEF), P-Rex1 is a key determinant of progression to metastasis in a number of human cancers. In accordance with this proposed role in cancer cell invasion and metastasis, we find that ectopic expression of P-Rex1 in an immortalised human fibroblast cell line is sufficient to drive multiple migratory and invasive phenotypes. The invasive phenotype is greatly enhanced by the presence of a gradient of serum or platelet-derived growth factor, and is dependent upon the expression of functional PDGF receptor β. Consistently, the invasiveness of WM852 melanoma cells, which endogenously express P-Rex1 and PDGFRβ, is opposed by siRNA of either of these proteins. Furthermore, the current model of P-Rex1 activation is advanced through demonstration of P-Rex1 and PDGFRβ as components of the same macromolecular complex. These data suggest that P-Rex1 has an influence on physiological migratory processes, such as invasion of cancer cells, both through effects upon classical Rac1-driven motility and a novel association with RTK signalling complexes
The Galactic Center Black Hole Laboratory
The super-massive 4 million solar mass black hole Sagittarius~A* (SgrA*)
shows flare emission from the millimeter to the X-ray domain. A detailed
analysis of the infrared light curves allows us to address the accretion
phenomenon in a statistical way. The analysis shows that the near-infrared
flare amplitudes are dominated by a single state power law, with the low states
in SgrA* limited by confusion through the unresolved stellar background. There
are several dusty objects in the immediate vicinity of SgrA*. The source G2/DSO
is one of them. Its nature is unclear. It may be comparable to similar stellar
dusty sources in the region or may consist predominantly of gas and dust. In
this case a particularly enhanced accretion activity onto SgrA* may be expected
in the near future. Here the interpretation of recent data and ongoing
observations are discussed.Comment: 30 pages - 7 figures - accepted for publication by Springer's
"Fundamental Theories of Physics" series; summarizing GC contributions of 2
conferences: 'Equations of Motion in Relativistic Gravity' at the
Physikzentrum Bad Honnef, Bad Honnef, Germany, (Feb. 17-23, 2013) and the
COST MP0905 'The Galactic Center Black Hole Laboratory' Granada, Spain (Nov.
19 - 22, 2013
Closed-loop separation control over a sharp edge ramp using Genetic Programming
We experimentally perform open and closed-loop control of a separating
turbulent boundary layer downstream from a sharp edge ramp. The turbulent
boundary layer just above the separation point has a Reynolds number
based on momentum thickness. The goal of the
control is to mitigate separation and early re-attachment. The forcing employs
a spanwise array of active vortex generators. The flow state is monitored with
skin-friction sensors downstream of the actuators. The feedback control law is
obtained using model-free genetic programming control (GPC) (Gautier et al.
2015). The resulting flow is assessed using the momentum coefficient, pressure
distribution and skin friction over the ramp and stereo PIV. The PIV yields
vector field statistics, e.g. shear layer growth, the backflow area and vortex
region. GPC is benchmarked against the best periodic forcing. While open-loop
control achieves separation reduction by locking-on the shedding mode, GPC
gives rise to similar benefits by accelerating the shear layer growth.
Moreover, GPC uses less actuation energy.Comment: 24 pages, 24 figures, submitted to Experiments in Fluid
Global burden of human brucellosis : a systematic review of disease frequency
BACKGROUND: This report presents a systematic review of scientific literature published between 1990-2010 relating to the frequency of human brucellosis, commissioned by WHO. The objectives were to identify high quality disease incidence data to complement existing knowledge of the global disease burden and, ultimately, to contribute towards the calculation of a Disability-Adjusted Life Years (DALY) estimate for brucellosis.METHODS/PRINCIPAL FINDINGS: Thirty three databases were searched, identifying 2,385 articles relating to human brucellosis. Based on strict screening criteria, 60 studies were selected for quality assessment, of which only 29 were of sufficient quality for data analysis. Data were only available from 15 countries in the regions of Northern Africa and Middle East, Western Europe, Central and South America, Sub-Saharan Africa, and Central Asia. Half of the studies presented incidence data, six of which were longitudinal prospective studies, and half presented seroprevalence data which were converted to incidence rates. Brucellosis incidence varied widely between, and within, countries. Although study biases cannot be ruled out, demographic, occupational, and socioeconomic factors likely play a role. Aggregated data at national or regional levels do not capture these complexities of disease dynamics and, consequently, at-risk populations or areas may be overlooked. In many brucellosis-endemic countries, health systems are weak and passively-acquired official data underestimate the true disease burden.CONCLUSIONS: High quality research is essential for an accurate assessment of disease burden, particularly in Eastern Europe, the Asia-Pacific, Central and South America and Africa where data are lacking. Providing formal epidemiological and statistical training to researchers is essential for improving study quality. An integrated approach to disease surveillance involving both human health and veterinary services would allow a better understand of disease dynamics at the animal-human interface, as well as a more cost-effective utilisation of resources
- …
