47 research outputs found

    YAP contributes to DNA methylation remodeling upon mouse embryonic stem cell differentiation

    Get PDF
    The Yes-associated protein (YAP), one of the major effectors of the Hippo pathway together with its related protein WW-domain-containing transcription regulator 1 (WWTR1; also known as TAZ), mediates a range of cellular processes from proliferation and death to morphogenesis. YAP and WW-domain-containing transcription regulator 1 (WWTR1; also known as TAZ) regulate a large number of target genes, acting as coactivators of DNA-binding transcription factors or as negative regulators of transcription by interacting with the nucleosome remodeling and histone deacetylase complexes. YAP is expressed in self-renewing embryonic stem cells (ESCs), although it is still debated whether it plays any crucial roles in the control of either stemness or differentiation. Here we show that the transient downregulation of YAP in mouse ESCs perturbs cellular homeostasis, leading to the inability to differentiate properly. Bisulfite genomic sequencing revealed that this transient knockdown caused a genome-wide alteration of the DNA methylation remodeling that takes place during the early steps of differentiation, suggesting that the phenotype we observed might be due to the dysregulation of some of the mechanisms involved in regulation of ESC exit from pluripotency. By gene expression analysis, we identified two molecules that could have a role in the altered genome-wide methylation profile: the long noncoding RNA ephemeron, whose rapid upregulation is crucial for the transition of ESCs into epiblast, and the methyltransferase-like protein Dnmt3l, which, during the embryo development, cooperates with Dnmt3a and Dnmt3b to contribute to the de novo DNA methylation that governs early steps of ESC differentiation. These data suggest a new role for YAP in the governance of the epigenetic dynamics of exit from pluripotency

    Massive transcriptome sequencing of human spinal cord tissues provides new insights into motor neuron degeneration in als

    Get PDF
    ALS is a devastating and debilitating human disease characterized by the progressive death of upper and lower motor neurons. Although much effort has been made to elucidate molecular determinants underlying the onset and progression of the disorder, the causes of ALS remain largely unknown. In the present work, we have deeply sequenced whole transcriptome from spinal cord ventral horns of post-mortem ALS human donors affected by the sporadic form of the disease (which comprises ∼90% of the cases but which is less investigated than the inherited form of the disease). We observe 1160 deregulated genes including 18 miRNAs and show that down regulated genes are mainly of neuronal derivation while up regulated genes have glial origin and tend to be involved in neuroinflammation or cell death. Remarkably, we find strong deregulation of SNAP25 and STX1B at both mRNA and protein levels suggesting impaired synaptic function through SNAP25 reduction as a possible cause of calcium elevation and glutamate excitotoxicity. We also note aberrant alternative splicing but not disrupted RNA editing

    ASPicDB: a database of annotated transcript and protein variants generated by alternative splicing

    Get PDF
    Alternative splicing is emerging as a major mechanism for the expansion of the transcriptome and proteome diversity, particularly in human and other vertebrates. However, the proportion of alternative transcripts and proteins actually endowed with functional activity is currently highly debated. We present here a new release of ASPicDB which now provides a unique annotation resource of human protein variants generated by alternative splicing. A total of 256 939 protein variants from 17 191 multi-exon genes have been extensively annotated through state of the art machine learning tools providing information of the protein type (globular and transmembrane), localization, presence of PFAM domains, signal peptides, GPI-anchor propeptides, transmembrane and coiled-coil segments. Furthermore, full-length variants can be now specifically selected based on the annotation of CAGE-tags and polyA signal and/or polyA sites, marking transcription initiation and termination sites, respectively. The retrieval can be carried out at gene, transcript, exon, protein or splice site level allowing the selection of data sets fulfilling one or more features settled by the user. The retrieval interface also enables the selection of protein variants showing specific differences in the annotated features. ASPicDB is available at http://www.caspur.it/ASPicDB/

    VID22 counteracts G-quadruplex-induced genome instability

    Get PDF
    Genome instability is a condition characterized by the accumulation of genetic alterations and is a hallmark of cancer cells. To uncover new genes and cellular pathways affecting endogenous DNA damage and genome integrity, we exploited a Synthetic Genetic Array (SGA)-based screen in yeast. Among the positive genes, we identified VID22, reported to be involved in DNA double-strand break repair. vid22Δ cells exhibit increased levels of endogenous DNA damage, chronic DNA damage response activation and accumulate DNA aberrations in sequences displaying high probabilities of forming G-quadruplexes (G4-DNA). If not resolved, these DNA secondary structures can block the progression of both DNA and RNA polymerases and correlate with chromosome fragile sites. Vid22 binds to and protects DNA at G4-containing regions both in vitro and in vivo. Loss of VID22 causes an increase in gross chromosomal rearrangement (GCR) events dependent on G-quadruplex forming sequences. Moreover, the absence of Vid22 causes defects in the correct maintenance of G4-DNA rich elements, such as telomeres and mtDNA, and hypersensitivity to the G4-stabilizing ligand TMPyP4. We thus propose that Vid22 is directly involved in genome integrity maintenance as a novel regulator of G4 metabolism

    Protein Hydrolysates Are Avoided by Herbivores but Not by Omnivores in Two-Choice Preference Tests

    Get PDF
    Background: The negative sensory properties of casein hydrolysates (HC) often limit their usage in products intended for human consumption, despite HC being nutritious and having many functional benefits. Recent, but taxonomically limited, evidence suggests that other animals also avoid consuming HC when alternatives exist. Methodology/Principal Findings: We evaluated ingestive responses of five herbivorous species (guinea pig, mountain beaver, gopher, vole, and rabbit) and five omnivorous species (rat, coyote, house mouse, white-footed mouse, and deer mouse; N = 16–18/species) using solid foods containing 20% HC in a series of two-choice preference tests that used a nonprotein, cellulose-based alternative. Individuals were also tested with collagen hydrolysate (gelatin; GE) to determine whether it would induce similar ingestive responses to those induced by HC. Despite HC and GE having very different nutritional and sensory qualities, both hydrolysates produced similar preference score patterns. We found that the herbivores generally avoided the hydrolysates while the omnivores consumed them at similar levels to the cellulose diet or, more rarely, preferred them (HC by the white-footed mouse; GE by the rat). Follow-up preference tests pairing HC and the nutritionally equivalent intact casein (C) were performed on the three mouse species and the guinea pigs. For the mice, mean HC preference scores were lower in the HC v C compared to the HC v Cel tests, indicating that HC’s sensory qualities negatively affected its consumption. However, responses were species-specific. For the guinea pigs, repeated exposure to HC or C (4.7-h sessions; N = 10) were found to increase subsequent HC preference scores in an HC v C preference test, which was interpreted in the light of conservative foraging strategies thought to typify herbivores. Conclusions/Significance: This is the first empirical study of dietary niche-related taxonomic differences in ingestive responses to protein hydrolysates using multiple species under comparable conditions. Our results provide a basis for future work in sensory, physiological, and behavioral mechanisms of hydrolysate avoidance and on the potential use of hydrolysates for pest management

    Connecting p63 to cellular proliferation: The example of the adenosine deaminase target gene

    No full text
    An unresolved issue regards the role of p73 and p63, the two homologs of the p53 oncosuppressor gene, in normal cells and in tumor development. Specific target genes for each protein need to be identified and characterized in order to understand the specific role of each protein in tumor initiation and progression as well as in oncosuppression and development. We tested whether p63 is implicated in transcriptional events related to sustaining cell proliferation by transactivation of antiapoptotic and cell survival target genes such as Adenosine Deaminase (ADA), an important gene involved in cell proliferation. We demonstrate that ADA is a direct target gene of p63 isoforms. In human keratinocytes, the rate of proliferation and the high level of ADA transcript diminished upon elimination of p63 by small interfering RNA. Reporter assays and chromatin immunoprecipitation experiments indicate a physical interaction of p63 with the two putative p53 binding sites we identified in the ADA gene. Moreover, in response to p53 stabilization and DeltaNp63 downregulation in normal keratinocytes after U.V. treatment, we found a change in the transcriptional pattern of the p53 family target genes, consistent with the different roles played by p53 and p63 in tumor suppression and cellular proliferation. In fact p53 upregulation determined an increase in p21, which in turn mediated the cell cycle arrest, while the downregulation of DeltaNp63 determined a marked decrease in ADA transcript. The experiments reported here support the hypothesis that TAp63 and DeltaNp63 might contribute to tumor genesis not exclusively by antagonizing p53, but by conferring a proliferative potential on cancer cells through the transactivation of target genes indispensable for cell division, such as the Adenosine Deaminase gene

    Transcription of rat mitochondrial NADH-dehydrogenase subunits: Presence of antisense and precursor RNA species

    Get PDF
    AbstractWe have characterized the transcriptional pattern of the rat mitochondrial ND6-containing region in vivo. We have identified a stable polyadenylated RNA species complementary for the full length of the ND6 mRNA. The analysis of the ND5 region has revealed the presence of an antisense RNA only at its 3′ end. The presence of these stable antisense species complementary to structural genes is intriguing and suggests a possible regulatory function. The quantitative analyses have demonstrated that the H transcripts, both codogenic and non-codogenic, are more stable than the L transcripts. We have defined the 5′ end of the ND6 mRNA at the level of the ATG downstream of the tRNAGlu. The mapping of the ND1 5′ end has demonstrated that GTG is the first codon of the mRNA. Our findings suggest that the post-transcriptional mechanisms involved in the expression of the mt genome are much more numerous and complex than those already described in the literature

    p73 and p63 sustain cellular growth by transcriptional activation of cell cycle progression genes

    No full text
    Despite extensive studies on the role of tumor suppressor p53 protein and its homologues, p73 and p63, following their overexpression or cellular stress, very little is known about the regulation of the three proteins in cells during physiologic cell cycle progression. We report a role for p73 and p63 in supporting cellular proliferation through the transcriptional activation of the genes involved in G1-S and G2-M progression. We found that in MCF-7 cells, p73 and p63, but not p53, are modulated during the cell cycle with a peak in S phase, and their silencing determines a significant suppression of proliferation compared with the control. Chromatin immunoprecipitation analysis shows that in cycling cells, p73 and p63 are bound to the p53-responsive elements (RE) present in the regulatory region of cell cycle progression genes. On the contrary, when the cells are arrested in G 0-G1, p73 detaches from the REs and it is replaced by p53, which represses the expression of these genes. When the cells move in S phase, p73 is recruited again and p53 is displaced or is weakly bound to the REs. These data open new possibilities for understanding the involvement of p73 and p63 in cancer. The elevated concentrations of p73 and p63 found in many cancers could cause the aberrant activation of cell growth progression genes and therefore contribute to cancer initiation or progression under certain conditions. ©2009 American Association for Cancer Research
    corecore