843 research outputs found
Effects of energetic particles on zonal flow generation by toroidal Alfven eigenmode
Generation of zonal ow (ZF) by energetic particle (EP) driven toroidal Alfven
eigenmode (TAE) is investigated using nonlinear gyrokinetic theory. It is found
that, nonlinear resonant EP contri- bution dominates over the usual Reynolds
and Maxwell stresses due to thermal plasma nonlinear response. ZF can be forced
driven in the linear growth stage of TAE, with the growth rate being twice the
TAE growth rate. The ZF generation mechanism is shown to be related to
polarization induced by resonant EP nonlinearity. The generated ZF has both the
usual meso-scale and micro- scale radial structures. Possible consequences of
this forced driven ZF on the nonlinear dynamics of TAE are also discussed.Comment: To be submitted to Physics of Plasma
2D continuous spectrum of shear Alfven waves in the presence of a magnetic island
The radial structure of the continuous spectrum of shear Alfven modes is
calculated in the presence of a magnetic island in tokamak plasmas. Modes with
the same helicity of the magnetic island are considered in a slab model
approximation. In this framework, with an appropriate rotation of the
coordinates the problem reduces to 2 dimensions. Geometrical effects due to the
shape of the flux surface's cross section are retained to all orders. On the
other hand, we keep only curvature effects responsible of the beta induced gap
in the low-frequency part of the continuous spectrum. New continuum
accumulation points are found at the O-point of the magnetic island. The
beta-induced Alfven Eigenmodes (BAE) continuum accumulation point is found to
be positioned at the separatrix flux surface. The most remarkable result is the
nonlinear modification of the BAE continuum accumulation point frequency
Decay of geodesic acoustic modes due to the combined action of phase mixing and Landau damping
Geodesic acoustic modes (GAMs) are oscillations of the electric field whose
importance in tokamak plasmas is due to their role in the regulation of
turbulence. The linear collisionless damping of GAMs is investigated here by
means of analytical theory and numerical simulations with the global
gyrokinetic particle-in-cell code ORB5. The combined effect of the phase mixing
and Landau damping is found to quickly redistribute the GAM energy in
phase-space, due to the synergy of the finite orbit width of the passing ions
and the cascade in wave number given by the phase mixing. When plasma
parameters characteristic of realistic tokamak profiles are considered, the GAM
decay time is found to be an order of magnitude lower than the decay due to the
Landau damping alone, and in some cases of the same order of magnitude of the
characteristic GAM drive time due to the nonlinear interaction with an ITG
mode. In particular, the radial mode structure evolution in time is
investigated here and reproduced quantitatively by means of a dedicated initial
value code and diagnostics.Comment: Submitted to Phys. Plasma
On fast radial propagation of parametrically excited geodesic acoustic mode
The spatial and temporal evolution of parametrically excited geodesic
acoustic mode (GAM) initial pulse is investigated both analytically and
numerically. Our results show that the nonlinearly excited GAM propagates at a
group velocity which is, typically, much larger than that due to finite ion
Larmor radius as predicted by the linear theory. The nonlinear dispersion
relation of GAM driven by a finite amplitude drift wave pump is also derived,
showing a nonlinear frequency increment of GAM. Further implications of these
findings for interpreting experimental observations are also discussed
Nonlinear interplay of Alfven instabilities and energetic particles in tokamaks
The confinement of energetic particles (EP) is crucial for an efficient
heating of tokamak plasmas. Plasma instabilities such as Alfven Eigenmodes (AE)
can redistribute the EP population making the plasma heating less effective,
and leading to additional loads on the walls. The nonlinear dynamics of
toroidicity induced AE (TAE) is investigated by means of the global gyrokinetic
particle-in-cell code ORB5, within the NEMORB project. The nonperturbative
nonlinear interplay of TAEs and EP due to the wave-particle nonlinearity is
studied. In particular, we focus on the nonlinear modification of the
frequency, growth rate and radial structure of the TAE, depending on the
evolution of the EP distribution in phase space. For the ITPA benchmark case,
we find that the frequency increases when the growth rate decreases, and the
mode shrinks radially. This nonlinear evolution is found to be correctly
reproduced by means of a quasilinear model, namely a model where the linear
effects of the nonlinearly modified EP distribution function are retained.Comment: Submitted to Plasma Phys. Control. Fusio
Theoretical and numerical studies of wave-packet propagation in tokamak plasmas
Theoretical and numerical studies of wave-packet propagation are presented to
analyze the time varying 2D mode structures of electrostatic fluctuations in
tokamak plasmas, using general flux coordinates. Instead of solving the 2D wave
equations directly, the solution of the initial value problem is used to obtain
the 2D mode structure, following the propagation of wave-packets generated by a
source and reconstructing the time varying field. As application, the 2D WKB
method is applied to investigate the shaping effects (elongation and
triangularity) of tokamak geometry on the lower hybrid wave propagation and
absorbtion. Meanwhile, the Mode Structure Decomposition (MSD) method is used to
handle the boundary conditions and simplify the 2D problem to two nested 1D
problems. The MSD method is related to that discussed earlier by Zonca and Chen
[Phys. Fluids B 5, 3668 (1993)], and reduces to the well-known "ballooning
formalism" [J. W. Connor, R. J. Hastie, and J. B. Taylor, Phys. Rev. Lett. 40,
396 (1978)], when spatial scale separation applies. This method is used to
investigate the time varying 2D electrostatic ITG mode structure with a mixed
WKB-full-wave technique. The time varying field pattern is reconstructed and
the time asymptotic structure of the wave-packet propagation gives the 2D
eigenmode and the corresponding eigenvalue. As a general approach to
investigate 2D mode structures in tokamak plasmas, our method also applies for
electromagnetic waves with general source/sink terms, either by an
internal/external antenna or nonlinear wave interaction with zonal structures.Comment: 24 pages, 14 figure
Kolmogorov-Sinai entropy in field line diffusion by anisotropic magnetic turbulence
The Kolmogorov-Sinai (KS) entropy in turbulent diffusion of magnetic field
lines is analyzed on the basis of a numerical simulation model and theoretical
investigations. In the parameter range of strongly anisotropic magnetic
turbulence the KS entropy is shown to deviate considerably from the earlier
predicted scaling relations [Rev. Mod. Phys. {\bf 64}, 961 (1992)]. In
particular, a slowing down logarithmic behavior versus the so-called Kubo
number (, where is the ratio of the rms magnetic fluctuation field to the magnetic field
strength, and and are the correlation lengths in respective
dimensions) is found instead of a power-law dependence. These discrepancies are
explained from general principles of Hamiltonian dynamics. We discuss the
implication of Hamiltonian properties in governing the paradigmatic
"percolation" transport, characterized by , associating it with the
concept of pseudochaos (random non-chaotic dynamics with zero Lyapunov
exponents). Applications of this study pertain to both fusion and astrophysical
plasma and by mathematical analogy to problems outside the plasma physics.
This research article is dedicated to the memory of Professor George M.
ZaslavskyComment: 15 pages, 2 figures. Accepted for publication on Plasma Physics and
Controlled Fusio
An extended hybrid magnetohydrodynamics gyrokinetic model for numerical simulation of shear Alfv\'en waves in burning plasmas
Adopting the theoretical framework for the generalized fishbonelike
dispersion relation, an extended hybrid magnetohydrodynamics gyrokinetic
simulation model has been derived analytically by taking into account both
thermal ion compressibility and diamagnetic effects in addition to energetic
particle kinetic behaviors. The extended model has been used for implementing
an eXtended version of Hybrid Magnetohydrodynamics Gyrokinetic Code (XHMGC) to
study thermal ion kinetic effects on Alfv\'enic modes driven by energetic
particles, such as kinetic beta induced Alfv\'en eigenmodes in tokamak fusion
plasmas
- …