96 research outputs found

    Robust isothermal electric switching of interface magnetization: A route to voltage-controlled spintronics

    Get PDF
    Roughness-insensitive and electrically controllable magnetization at the (0001) surface of antiferromagnetic chromia is observed using magnetometry and spin-resolved photoemission measurements and explained by the interplay of surface termination and magnetic ordering. Further, this surface in placed in proximity with a ferromagnetic Co/Pd multilayer film. Exchange coupling across the interface between chromia and Co/Pd induces an electrically controllable exchange bias in the Co/Pd film, which enables a reversible isothermal (at room temperature) shift of the global magnetic hysteresis loop of the Co/Pd film along the magnetic field axis between negative and positive values. These results reveal the potential of magnetoelectric chromia for spintronic applications requiring non-volatile electric control of magnetization.Comment: Single PDF file: 27 pages, 6 figures; version of 12/30/09; submitted to Nature Material

    Ordered arrays of multiferroic epitaxial nanostructures

    Get PDF
    Epitaxial heterostructures combining ferroelectric (FE) and ferromagnetic (FiM) oxides are a possible route to explore coupling mechanisms between the two independent order parameters, polarization and magnetization of the component phases. We report on the fabrication and properties of arrays of hybrid epitaxial nanostructures of FiM NiFe2O4 (NFO) and FE PbZr0.52Ti0.48O3 or PbZr0.2Ti0.8O3, with large range order and lateral dimensions from 200 nm to 1 micron

    Reversible Control of Magnetic Interactions by Electric Field in a Single Phase Material

    Full text link
    Intrinsic magnetoelectric coupling describes the interaction between magnetic and electric polarization through an inherent microscopic mechanism in a single phase material. This phenomenon has the potential to control the magnetic state of a material with an electric field, an enticing prospect for device engineering. We demonstrate 'giant' magnetoelectric cross-field control in a single phase rare earth titanate film. In bulk form, EuTiO3 is antiferromagnetic. However, both anti and ferromagnetic interactions coexist between different nearest neighbor europium ions. In thin epitaxial films, strain can be used to alter the relative strength of the magnetic exchange constants. Here, we not only show that moderate biaxial compression precipitates local magnetic competition, but also demonstrate that the application of an electric field at this strain state, switches the magnetic ground state. Using first principles density functional theory, we resolve the underlying microscopic mechanism resulting in the EuTiO3 G-type magnetic structure and illustrate how it is responsible for the 'giant' cross-field magnetoelectric effect

    Nano-patterning of magnetic anisotropy by controlled strain relief

    No full text
    In the highly strained system Fe/W(001) the formation of parallel dislocation bundles upon nucleation of fifth layer islands is used to locally break the fourfold symmetry. The uniaxial strain relief in the dislocation bundles introduces strong uniaxial in-plane magnetic anisotropies. By controlling the density of fifth layer islands local magnetic anisotropies are structured on the nanometer scale. As a result of this patterning of anisotropies, the magnetic properties of the films are drastically altered. As a function of the pattern size, the coercivity of the films can be varied in a controlled way over more than two orders of magnitude without changing the film thickness. For pattern sizes larger than the estimated domain wall width, MOKE and micromagnetic calculations indicate the break-up of the film into magnetic in-plane structures on the 100 nm scale
    corecore