96 research outputs found
Robust isothermal electric switching of interface magnetization: A route to voltage-controlled spintronics
Roughness-insensitive and electrically controllable magnetization at the
(0001) surface of antiferromagnetic chromia is observed using magnetometry and
spin-resolved photoemission measurements and explained by the interplay of
surface termination and magnetic ordering. Further, this surface in placed in
proximity with a ferromagnetic Co/Pd multilayer film. Exchange coupling across
the interface between chromia and Co/Pd induces an electrically controllable
exchange bias in the Co/Pd film, which enables a reversible isothermal (at room
temperature) shift of the global magnetic hysteresis loop of the Co/Pd film
along the magnetic field axis between negative and positive values. These
results reveal the potential of magnetoelectric chromia for spintronic
applications requiring non-volatile electric control of magnetization.Comment: Single PDF file: 27 pages, 6 figures; version of 12/30/09; submitted
to Nature Material
Ordered arrays of multiferroic epitaxial nanostructures
Epitaxial heterostructures combining ferroelectric (FE) and ferromagnetic (FiM) oxides are a possible route to explore coupling mechanisms between the two independent order parameters, polarization and magnetization of the component phases. We report on the fabrication and properties of arrays of hybrid epitaxial nanostructures of FiM NiFe2O4 (NFO) and FE PbZr0.52Ti0.48O3 or PbZr0.2Ti0.8O3, with large range order and lateral dimensions from 200 nm to 1 micron
Reversible Control of Magnetic Interactions by Electric Field in a Single Phase Material
Intrinsic magnetoelectric coupling describes the interaction between magnetic
and electric polarization through an inherent microscopic mechanism in a single
phase material. This phenomenon has the potential to control the magnetic state
of a material with an electric field, an enticing prospect for device
engineering. We demonstrate 'giant' magnetoelectric cross-field control in a
single phase rare earth titanate film. In bulk form, EuTiO3 is
antiferromagnetic. However, both anti and ferromagnetic interactions coexist
between different nearest neighbor europium ions. In thin epitaxial films,
strain can be used to alter the relative strength of the magnetic exchange
constants. Here, we not only show that moderate biaxial compression
precipitates local magnetic competition, but also demonstrate that the
application of an electric field at this strain state, switches the magnetic
ground state. Using first principles density functional theory, we resolve the
underlying microscopic mechanism resulting in the EuTiO3 G-type magnetic
structure and illustrate how it is responsible for the 'giant' cross-field
magnetoelectric effect
Enhanced electric conductivity at ferroelectric vortex cores in BiFeO3
In many large ensembles, the property of the system as a whole cannot be understood from studying the individual entities alone ¿ these ensembles can be made up by neurons in the brain, transport users in traffic networks or data packages in the Internet. The past decade has seen important progress in our fundamental understanding of what such seemingly disparate 'complex systems' have in common; some of these advances are surveyed here
Nano-patterning of magnetic anisotropy by controlled strain relief
In the highly strained system Fe/W(001) the formation of parallel
dislocation bundles upon nucleation of fifth layer islands is used
to locally break the fourfold symmetry. The uniaxial strain
relief in the dislocation bundles introduces strong uniaxial
in-plane magnetic anisotropies. By controlling the density of
fifth layer islands local magnetic anisotropies are structured on
the nanometer scale. As a result of this patterning of
anisotropies, the magnetic properties of the films are drastically
altered. As a function of the pattern size, the coercivity of the
films can be varied in a controlled way over more than two orders
of magnitude without changing the film thickness. For pattern
sizes larger than the estimated domain wall width, MOKE and
micromagnetic calculations indicate the break-up of the film into
magnetic in-plane structures on the 100 nm scale
- …