250 research outputs found

    Gauge dependence of calculations in relativistic Coulomb excitation

    Full text link
    Before a quantum-mechanical calculation involving electromagnetic interactions is performed, a choice must be made of the gauge to be used in expressing the potentials. If the calculation is done exactly, the observable results it predicts will be independent of the choice of gauge. However, in most practical calculations approximations are made, which can destroy the gauge invariance of the predictions. We compare here the results of coupled-channel time-dependent relativistic Coulomb excitation calculations, as performed in either Lorentz or Coulomb gauges. We find significant differences when the bombarding energy per nucleon is ≥\geq 2 GeV, which indicates that the common practice of relying completely on the Lorentz gauge can be dangerous.Comment: 23 pages, 3 figure

    Coulomb Excitation of Multi-Phonon Levels of the Giant Dipole Resonance

    Full text link
    A closed expression is obtained for the cross-section for Coulomb excitation of levels of the giant dipole resonance of given angular momentum and phonon number. Applications are made to the Goldhaber-Teller and Steinwedel-Jensen descriptions of the resonance, at non-relativistic and relativistic bombarding energies.Comment: 16 pages, 5 figure

    Quantum derivation of the use of classical electromagnetic potentials in relativistic Coulomb excitation

    Full text link
    We prove that a relativistic Coulomb excitation calculation in which the classical electromagnetic field of the projectile is used to induce transitions between target states gives the same target transition amplitudes, to all orders of perturbation theory, as would a calculation in which the interaction between projectile and target is mediated by a quantized electromagnetic field.Comment: 1 .zip file containing LaTex source plus three figures as .eps file

    Equivalence of the long-wavelength approximation and the truncated Taylor expansion in relativistic Coulomb excitation

    Get PDF
    The long-wavelength approximation and the truncated Taylor expansion are frequently used in the theory of relativistic Coulomb excitation to obtain multipole expansions of the interaction. It is shown in this note that these two approximations are exactly equivalent.Comment: 5 page

    Isolated hepatocytes versus hepatocyte spheroids: in vitro culture of rat hepatocytes.

    Get PDF
    The use of hepatocytes that express liver-specific functions to develop an artificial liver is promising. Unfortunately, the loss of specialized liver functions (dedifferentiation) is still a major problem. Different techniques, such as collagen entrapment, spherical multicellular aggregates (spheroids), and coculture of hepatocytes with extracellular matrix, have been used to improve the performance of hepatocytes in culture. The aim of this study was to compare two different models of hepatocyte isolation in culture: isolated hepatocytes (G1) and hepatocyte spheroids (60% hepatocytes, 40% nonparenchymal cells, and extracellular matrix) (G2). To test functional activity of hepatocytes, both synthetic and metabolic, production of albumin and benzodiazepine transformation into metabolites was tested. G2 showed a high albumin secretion, while a decrease after 15 days of culture in G1 was noted. Diazepam metabolites were higher in G2 than in G1 in all samples, but had statistical significance at days 14 and 21 (p < 0.01). The glycogen content, after 30 days of culture, was very low in G1 (14.2 ± 4.4%), while in G2 it was 72.1 ± 2.6% (p < 0.01). Our study confirms the effectiveness of a culture technique with extracellular matrix and nonparenchymal cells. Maintenance of a prolonged functional activity has been related to restoration of cell polarity and close cell-to-cell contact. We showed that isolated hepatocytes maintain their functional activity for a period significantly reduced, when compared to the hepatocyte spheroids. We confirmed the role of extracellular matrix as a crucial component to promote hepatocyte homeostasis, and the close link between cellular architecture and tissue-specific functions

    Selective formation, reactivity, redox and magnetic properties of MnIII and FeIII dinuclear complexes with shortened salen-type schiff base ligands

    Get PDF
    The reactivity of the shortened salen-type ligands H3salmp, H2salmen and H2sal(p-X)ben with variable para-substituent on the central aromatic ring (X = tBu, Me, H, F, Cl, CF3, NO2) towards the trivalent metal ions manganese(III) and iron(III) is presented. The selective formation of the dinuclear complexes [M2(m-salmp)2], M = Mn (1a), Fe (2a), [M2(m-salmen)2(m-OR)2)], R = Et, Me, H and M = Mn (3a\u2013c) or Fe (4a\u2013c), and (M2(m-sal[p-X]ben)2(m-OMe)2), X = tBu, Me, H, F, Cl, CF3, NO2 and M = Mn (5a\u2013g) or Fe (6a\u2013g), could be identified by reaction of the Schiff bases with metal salts and the base NEt3, and their characterization through elemental analysis, infrared spectroscopy, mass spectrometry and single-crystal X-ray diffraction of 2a.2AcOEt, 2a.2CH3CN and 3c.2DMF was performed. In the case of iron(III) and H3salmp, when using NaOH as a base instead of NEt3, the dinuclear complexes [Fe2(m-salmp)(m-OR)(salim)2], R = Me, H (2b\u2013c) could be isolated and spectroscopically characterized, including the crystal structure of 2b.1.5H2O, which showed that rupture of one salmp3\u2013 to two coordinated salim\u2013 ligands and release of one salH molecule occurred. The same hydrolytic tendency could be identified with sal(p-X)ben ligands in the case of iron(III) also by using NEt3 or upon standing in solution, while manganese(III) did not promote such a C\u2013N bond breakage. Cyclic voltammetry studies were performed for 3b, 4b, 5a and 6a, revealing that the iron(III) complexes can be irreversibly reduced to the mixed-valence FeIIFeIII and FeII2 dinuclear species, while the manganese(III) derivatives can be reversibly oxidized to either the mixed-valence MnIIIMnIV or to the MnIV2 dinuclear species. The super-exchange interaction between the metal centers, mediated by the bridging ligands, resulted in being antiferromagnetic (AFM) for the selected dinuclear compounds 3b, 4b, 5a, 5e, 5f, 6a and 6e. The coupling constants J (\u20132J \u15c1\ub7\u15c2 formalism) had values around \u201313 cm\u20131 for manganese(III) compounds, among the largest AFM coupling constants reported so far for dinuclear MnIII2 derivatives, while values between \u20133 and \u201310 cm\u20131 were obtained for iron(III) compounds
    • …
    corecore