3,256 research outputs found
Dissipation Efficiency in Turbulent Convective Zones in Low Mass Stars
We extend the analysis of Penev et al. (2007) to calculate effective
viscosities for the surface convective zones of three main sequence stars of
0.775Msun, 0.85Msun and the present day Sun. In addition we also pay careful
attention to all normalization factors and assumptions in order to derive
actual numerical prescriptions for the effective viscosity as a function of the
period and direction of the external shear. Our results are applicable for
periods that are too long to correspond to eddies that fall within the inertial
subrange of Kolmogorov scaling, but no larger than the convective turnover
time, when the assumptions of the calculation break down. We find linear
scaling of effective viscosity with period and magnitudes at least three times
larger than the Zahn (1966, 1989) prescription.Comment: 13 pages, 3 figures Effective viscosity scaling changed by a factor
of ~100. More details provided for the numerical model
From Cavendish to PLANCK: Constraining Newton's Gravitational Constant with CMB Temperature and Polarization Anisotropy
We present new constraints on cosmic variations of Newton's gravitational
constant by making use of the latest CMB data from WMAP, BOOMERANG, CBI and
ACBAR experiments and independent constraints coming from Big Bang
Nucleosynthesis. We found that current CMB data provide constraints at the 10%
level, that can be improved to 3% by including BBN data. We show that future
data expected from the Planck satellite could constrain G at the 1.5% level
while an ultimate, cosmic variance limited, CMB experiment could reach a
precision of about 0.4%, competitive with current laboratory measurements.Comment: 6 pages, 8 figures, corrected typos, added reference
The surface signature of the tidal dissipation of the core in a two-layer planet
Tidal dissipation, which is directly linked to internal structure, is one of
the key physical mechanisms that drive systems evolution and govern their
architecture. A robust evaluation of its amplitude is thus needed to predict
evolution time for spins and orbits and their final states. The purpose of this
paper is to refine recent model of the anelastic tidal dissipation in the
central dense region of giant planets, commonly assumed to retain a large
amount of heavy elements, which constitute an important source of dissipation.
The previous paper evaluated the impact of the presence of the static fluid
envelope on the tidal deformation of the core and on the associated anelastic
tidal dissipation, through the tidal quality factor Qc. We examine here its
impact on the corresponding effective anelastic tidal dissipation, through the
effective tidal quality factor Qp. We show that the strength of this mechanism
mainly depends on mass concentration. In the case of Jupiter- and Saturn-like
planets, it can increase their effective tidal dissipation by, around, a factor
2.4 and 2 respectively. In particular, the range of the rheologies compatible
with the observations is enlarged compared to the results issued from previous
formulations. We derive here an improved expression of the tidal effective
factor Qp in terms of the tidal dissipation factor of the core Qc, without
assuming the commonly used assumptions. When applied to giant planets, the
formulation obtained here allows a better match between the an elastic core's
tidal dissipation of a two-layer model and the observations.Comment: 5 pages, 2 figures, Accepted for publication in Astronomy &
Astrophysic
Dynamical Tide in Solar-Type Binaries
Circularization of late-type main-sequence binaries is usually attributed to
turbulent convection, while that of early-type binaries is explained by
resonant excitation of g modes. We show that the latter mechanism operates in
solar-type stars also and is at least as effective as convection, despite
inefficient damping of g modes in the radiative core. The maximum period at
which this mechanism can circularize a binary composed of solar-type stars in
10 Gyr is as low as 3 days, if the modes are damped by radiative diffusion only
and g-mode resonances are fixed; or as high as 6 days, if one allows for
evolution of the resonances and for nonlinear damping near inner turning
points. Even the larger theoretical period falls short of the observed
transition period by a factor two.Comment: 17 pages, 2 postscript figures, uses aaspp4.sty. Submitted to Ap
The New Transiting Planet OGLE-TR-56b: Orbit and Atmosphere
Motivated by the identification of the very close-in extrasolar giant planet
OGLE-TR-56b, we explore the implications of its existence on problems of tidal
dissipation, planet migration, and atmospheric stability. The small orbit of
OGLE-TR-56b makes the planet an interesting test particle case for tidal
dissipation in stellar convection zones. We show that it favors prescriptions
of suppressed convective eddy viscosity. Precise timing of the transits of
OGLE-TR-56b might place interesting constraints on stellar convection theory,
if orbital period change is detected in the near future.Comment: 12 pages, 1 figure, submitted to ApJ
- …