660 research outputs found

    Fatal lymphoproliferation and acute monocytic leukemia-like disease following infectious mononucleosis in the elderly

    Get PDF
    Three elderly patients are reported, in whom serologically confirmed recent infectious mononucleosis is followed by fatal lymphoproliferation (case 1), by acute monocytic leukemia (case 2), and by acute probably monocytic leukemia (case 3)

    Cyclotron resonance of the quasi-two-dimensional electron gas at Hg1-xCdxTe grain boundaries

    Get PDF
    The magnetotransmission of a p-type Hg0.766Cd0.234Te bicrystal containing a single grain boundary with an inversion layer has been investigated in the submillimetre wavelength range. For the first time the cyclotron resonance lines belonging to the various electric subbands of a quasi-two-dimensional carrier system at a grain boundary could be detected. The measured cyclotron masses and the subband densities determined from Shubnikov-de Haas experiments are compared with theoretical predictions and it is found that the data can be explained very well within the framework of a triangular well approximation model which allows for non-parabolic effects

    Simultaneous observations of NLCs and MSEs at midlatitudes: implications for formation and advection of ice particles

    Get PDF
    We combined ground-based lidar observations of noctilucent clouds (NLCs) with collocated, simultaneous radar observations of mesospheric summer echoes (MSEs) in order to compare ice cloud altitudes at a midlatitude site (KĂŒhlungsborn, Germany, 54°&thinsp;N, 12°&thinsp;E). Lidar observations are limited to larger particles ( &gt; 10&thinsp;nm), while radars are also sensitive to small particles ( &lt; 10&thinsp;nm), but require sufficient ionization and turbulence at the ice cloud altitudes. The combined lidar and radar data set thus includes some information on the size distribution within the cloud and through this on the history of the cloud. The soundings for this study are carried out by the IAP Rayleigh–Mie–Raman (RMR) lidar and the OSWIN VHF radar. On average, there is no difference between the lower edges (zlowNLC and zlowMSE). The mean difference of the upper edges zupNLC and zupMSE is  ∌ 500&thinsp;m, which is much less than expected from observations at higher latitudes. In contrast to high latitudes, the MSEs above our location typically do not reach much higher than the NLCs. In addition to earlier studies from our site, this gives additional evidence for the supposition that clouds containing large enough particles to be observed by lidar are not formed locally but are advected from higher latitudes. During the advection process, the smaller particles in the upper part of the cloud either grow and sediment, or they sublimate. Both processes result in a thinning of the layer. High-altitude MSEs, usually indicating nucleation of ice particles, are rarely observed in conjunction with lidar observations of NLCs at KĂŒhlungsborn.</p

    Multi-electron giant dipole resonances of atoms in crossed electric and magnetic fields

    Full text link
    Multi-electron giant dipole resonances of atoms in crossed electric and magnetic fields are investigated. Stationary configurations corresponding to a highly symmetric arrangement of the electrons on a decentered circle are derived, and a normal-mode stability analysis is performed. A classification of the various modes, which are dominated either by the magnetic or Coulomb interactions, is provided. A six-dimensional wave-packet dynamical study, based on the MCTDH approach, is accomplished for the two-electron resonances, yielding in particular lifetimes of more than 0.1 Ό\mus for strong electric fields.Comment: 7 pages, 3 figure

    Generation of annotated multimodal ground truth datasets for abdominal medical image registration

    Full text link
    Sparsity of annotated data is a major limitation in medical image processing tasks such as registration. Registered multimodal image data are essential for the diagnosis of medical conditions and the success of interventional medical procedures. To overcome the shortage of data, we present a method that allows the generation of annotated multimodal 4D datasets. We use a CycleGAN network architecture to generate multimodal synthetic data from the 4D extended cardiac-torso (XCAT) phantom and real patient data. Organ masks are provided by the XCAT phantom, therefore the generated dataset can serve as ground truth for image segmentation and registration. Realistic simulation of respiration and heartbeat is possible within the XCAT framework. To underline the usability as a registration ground truth, a proof of principle registration is performed. Compared to real patient data, the synthetic data showed good agreement regarding the image voxel intensity distribution and the noise characteristics. The generated T1-weighted magnetic resonance imaging (MRI), computed tomography (CT), and cone beam CT (CBCT) images are inherently co-registered. Thus, the synthetic dataset allowed us to optimize registration parameters of a multimodal non-rigid registration, utilizing liver organ masks for evaluation. Our proposed framework provides not only annotated but also multimodal synthetic data which can serve as a ground truth for various tasks in medical imaging processing. We demonstrated the applicability of synthetic data for the development of multimodal medical image registration algorithms.Comment: 12 pages, 5 figures. This work has been published in the International Journal of Computer Assisted Radiology and Surgery volum

    Bose-Hubbard model with occupation dependent parameters

    Full text link
    We study the ground-state properties of ultracold bosons in an optical lattice in the regime of strong interactions. The system is described by a non-standard Bose-Hubbard model with both occupation-dependent tunneling and on-site interaction. We find that for sufficiently strong coupling the system features a phase-transition from a Mott insulator with one particle per site to a superfluid of spatially extended particle pairs living on top of the Mott background -- instead of the usual transition to a superfluid of single particles/holes. Increasing the interaction further, a superfluid of particle pairs localized on a single site (rather than being extended) on top of the Mott background appears. This happens at the same interaction strength where the Mott-insulator phase with 2 particles per site is destroyed completely by particle-hole fluctuations for arbitrarily small tunneling. In another regime, characterized by weak interaction, but high occupation numbers, we observe a dynamical instability in the superfluid excitation spectrum. The new ground state is a superfluid, forming a 2D slab, localized along one spatial direction that is spontaneously chosen.Comment: 16 pages, 4 figure

    Local biases drive, but do not determine, the perception of illusory trajectories

    Get PDF
    When a dot moves horizontally across a set of tilted lines of alternating orientations, the dot appears to be moving up and down along its trajectory. This perceptual phenomenon, known as the slalom illusion, reveals a mismatch between the veridical motion signals and the subjective percept of the motion trajectory, which has not been comprehensively explained. In the present study, we investigated the empirical boundaries of the slalom illusion using psychophysical methods. The phenomenon was found to occur both under conditions of smooth pursuit eye movements and constant fixation, and to be consistently amplified by intermittently occluding the dot trajectory. When the motion direction of the dot was not constant, however, the stimulus display did not elicit the expected illusory percept. These findings confirm that a local bias towards perpendicularity at the intersection points between the dot trajectory and the tilted lines cause the illusion, but also highlight that higher-level cortical processes are involved in interpreting and amplifying the biased local motion signals into a global illusion of trajectory perception

    Local biases drive, but do not determine, the perception of illusory trajectories

    Get PDF
    When a dot moves horizontally across a set of tilted lines of alternating orientations, the dot appears to be moving up and down along its trajectory. This perceptual phenomenon, known as the slalom illusion, reveals a mismatch between the veridical motion signals and the subjective percept of the motion trajectory, which has not been comprehensively explained. In the present study, we investigated the empirical boundaries of the slalom illusion using psychophysical methods. The phenomenon was found to occur both under conditions of smooth pursuit eye movements and constant fixation, and to be consistently amplified by intermittently occluding the dot trajectory. When the motion direction of the dot was not constant, however, the stimulus display did not elicit the expected illusory percept. These findings confirm that a local bias towards perpendicularity at the intersection points between the dot trajectory and the tilted lines cause the illusion, but also highlight that higher-level cortical processes are involved in interpreting and amplifying the biased local motion signals into a global illusion of trajectory perception
    • 

    corecore