4,367 research outputs found

    Age of second language acquisition affects nonverbal conflict processing in children : an fMRI study

    Get PDF
    Background: In their daily communication, bilinguals switch between two languages, a process that involves the selection of a target language and minimization of interference from a nontarget language. Previous studies have uncovered the neural structure in bilinguals and the activation patterns associated with performing verbal conflict tasks. One question that remains, however is whether this extra verbal switching affects brain function during nonverbal conflict tasks. Methods: In this study, we have used fMRI to investigate the impact of bilingualism in children performing two nonverbal tasks involving stimulus-stimulus and stimulus-response conflicts. Three groups of 8-11-year-old children - bilinguals from birth (2L1), second language learners (L2L), and a control group of monolinguals (1L1) - were scanned while performing a color Simon and a numerical Stroop task. Reaction times and accuracy were logged. Results: Compared to monolingual controls, bilingual children showed higher behavioral congruency effect of these tasks, which is matched by the recruitment of brain regions that are generally used in general cognitive control, language processing or to solve language conflict situations in bilinguals (caudate nucleus, posterior cingulate gyrus, STG, precuneus). Further, the activation of these areas was found to be higher in 2L1 compared to L2L. Conclusion: The coupling of longer reaction times to the recruitment of extra language-related brain areas supports the hypothesis that when dealing with language conflicts the specialization of bilinguals hampers the way they can process with nonverbal conflicts, at least at early stages in life

    Separation of Circulating Tokens

    Full text link
    Self-stabilizing distributed control is often modeled by token abstractions. A system with a single token may implement mutual exclusion; a system with multiple tokens may ensure that immediate neighbors do not simultaneously enjoy a privilege. For a cyber-physical system, tokens may represent physical objects whose movement is controlled. The problem studied in this paper is to ensure that a synchronous system with m circulating tokens has at least d distance between tokens. This problem is first considered in a ring where d is given whilst m and the ring size n are unknown. The protocol solving this problem can be uniform, with all processes running the same program, or it can be non-uniform, with some processes acting only as token relays. The protocol for this first problem is simple, and can be expressed with Petri net formalism. A second problem is to maximize d when m is given, and n is unknown. For the second problem, the paper presents a non-uniform protocol with a single corrective process.Comment: 22 pages, 7 figures, epsf and pstricks in LaTe

    Depletion potential in hard-sphere mixtures: theory and applications

    Full text link
    We present a versatile density functional approach (DFT) for calculating the depletion potential in general fluid mixtures. In contrast to brute force DFT, our approach requires only the equilibrium density profile of the small particles {\em before} the big (test) particle is inserted. For a big particle near a planar wall or a cylinder or another fixed big particle the relevant density profiles are functions of a single variable, which avoids the numerical complications inherent in brute force DFT. We implement our approach for additive hard-sphere mixtures. By investigating the depletion potential for high size asymmetries we assess the regime of validity of the well-known Derjaguin approximation for hard-sphere mixtures and argue that this fails. We provide an accurate parametrization of the depletion potential in hard-sphere fluids which should be useful for effective Hamiltonian studies of phase behavior and colloid structure

    Fluids of platelike particles near a hard wall

    Full text link
    Fluids consisting of hard platelike particles near a hard wall are investigated using density functional theory. The density and orientational profiles as well as the surface tension and the excess coverage are determined and compared with those of a fluid of rodlike particles. Even for low densities slight orientational packing effects are found for the platelet fluid due to larger intermolecular interactions between platelets as compared with those between rods. A net depletion of platelets near the wall is exhibited by the excess coverage, whereas a change of sign of the excess coverage of hard-rod fluids is found upon increasing the bulk density.Comment: 6 pages, 9 figure

    Phase behaviour of additive binary mixtures in the limit of infinite asymmetry

    Get PDF
    We provide an exact mapping between the density functional of a binary mixture and that of the effective one-component fluid in the limit of infinite asymmetry. The fluid of parallel hard cubes is thus mapped onto that of parallel adhesive hard cubes. Its phase behaviour reveals that demixing of a very asymmetric mixture can only occur between a solvent-rich fluid and a permeated large particle solid or between two large particle solids with different packing fractions. Comparing with hard spheres mixtures we conclude that the phase behaviour of very asymmetric hard-particle mixtures can be determined from that of the large component interacting via an adhesive-like potential.Comment: Full rewriting of the paper (also new title). 4 pages, LaTeX, uses revtex, multicol, epsfig, and amstex style files, to appear in Phys. Rev. E (Rapid Comm.

    Combined Global and Local Search for the Falsification of Hybrid Systems

    Full text link
    In this paper we solve the problem of finding a trajectory that shows that a given hybrid dynamical system with deterministic evolution leaves a given set of states considered to be safe. The algorithm combines local with global search for achieving both efficiency and global convergence. In local search, it exploits derivatives for efficient computation. Unlike other methods for falsification of hybrid systems with deterministic evolution, we do not restrict our search to trajectories of a certain bounded length but search for error trajectories of arbitrary length

    Rosenfeld functional for non-additive hard spheres

    Full text link
    The fundamental measure density functional theory for hard spheres is generalized to binary mixtures of arbitrary positive and moderate negative non-additivity between unlike components. In bulk the theory predicts fluid-fluid phase separation into phases with different chemical compositions. The location of the accompanying critical point agrees well with previous results from simulations over a broad range of non-additivities and both for symmetric and highly asymmetric size ratios. Results for partial pair correlation functions show good agreement with simulation data.Comment: 8 pages with 4 figure

    Finding polynomial loop invariants for probabilistic programs

    Full text link
    Quantitative loop invariants are an essential element in the verification of probabilistic programs. Recently, multivariate Lagrange interpolation has been applied to synthesizing polynomial invariants. In this paper, we propose an alternative approach. First, we fix a polynomial template as a candidate of a loop invariant. Using Stengle's Positivstellensatz and a transformation to a sum-of-squares problem, we find sufficient conditions on the coefficients. Then, we solve a semidefinite programming feasibility problem to synthesize the loop invariants. If the semidefinite program is unfeasible, we backtrack after increasing the degree of the template. Our approach is semi-complete in the sense that it will always lead us to a feasible solution if one exists and numerical errors are small. Experimental results show the efficiency of our approach.Comment: accompanies an ATVA 2017 submissio

    Harmonically confined, semiflexible polymer in a channel: response to a stretching force and spatial distribution of the endpoints

    Full text link
    We consider an inextensible, semiflexible polymer or worm-like chain which is confined in the transverse direction by a parabolic potential and subject to a longitudinal force at the ends, so that the polymer is stretched out and backfolding is negligible. Simple analytic expressions for the partition function, valid in this regime, are obtained for chains of arbitrary length with a variety of boundary conditions at the ends. The spatial distribution of the end points or radial distribution function is also analyzed.Comment: 14 pages including figure

    Impacts of warming and elevated CO\u3csub\u3e2\u3c/sub\u3e on a semi-arid grassland are non-additive, shift with precipitation, and reverse over time

    Get PDF
    It is unclear how elevated CO2 (eCO2) and the corresponding shifts in temperature and precipitation will interact to impact ecosystems over time. During a 7-year experiment in a semi-arid grassland, the response of plant biomass to eCO2 and warming was largely regulated by interannual precipitation, while the response of plant community composition was more sensitive to experiment duration. The combined effects of eCO2 and warming on aboveground plant biomass were less positive in ‘wet’ growing seasons, but total plant biomass was consistently stimulated by ~ 25% due to unique, supra-additive responses of roots. Independent of precipitation, the combined effects of eCO2 and warming on C3 graminoids became increasingly positive and supraadditive over time, reversing an initial shift toward C4 grasses. Soil resources also responded dynamically and non-additively to eCO2 and warming, shaping the plant responses. Our results suggest grasslands are poised for drastic changes in function and highlight the need for long-term, factorial experiments
    corecore