145 research outputs found
Improved setup for producing slow beams of cold molecules using a rotating nozzle
Intense beams of cold and slow molecules are produced by supersonic expansion
out of a rapidly rotating nozzle, as first demonstrated by Gupta and
Herschbach. An improved setup is presented that allows to accelerate or
decelerate cold atomic and molecular beams by up to 500 m/s. Technical
improvements are discussed and beam parameters are characterized by detailed
analysis of time of flight density distributions. The possibility of combining
this beam source with electrostatic fields for guiding polar molecules is
demonstrated
Adsorption and absorption energies of hydrogen with palladium
Thermal recombinative desorption rates of HD on Pd(111) and Pd(332) are reported from transient kinetic experiments performed between 523 and 1023 K. A detailed kinetic model accurately describes the competition between recombination of surface-adsorbed hydrogen and deuterium atoms and their diffusion into the bulk. By fitting the model to observed rates, we derive the dissociative adsorption energies (E0, adsH2 = 0.98 eV; E0, adsD2 = 1.00 eV; E0, adsHD = 0.99 eV) as well as the classical dissociative binding energy ϔads = 1.02 ± 0.03 eV, which provides a benchmark for electronic structure theory. In a similar way, we obtain the classical energy required to move an H or D atom from the surface to the bulk (ϔsb = 0.46 ± 0.01 eV) and the isotope specific energies, E0, sbH = 0.41 eV and E0, sbD = 0.43 eV. Detailed insights into the process of transient bulk diffusion are obtained from kinetic Monte Carlo simulations
A new Stark decelerator based surface scattering instrument for studying energy transfer at the gas-surface interface
We report on the design and characterization of a new apparatus for performing quantum-state resolved surface scattering experiments. The apparatus combines optical state-specific molecule preparation with a compact hexapole and a Stark decelerator to prepare carrier gas-free pulses of quantum-state pure CO molecules with velocities controllable between 33 and 1000 m/s with extremely narrow velocity distributions. The ultrahigh vacuum surface scattering chamber includes homebuilt ion and electron detectors, a closed-cycle helium cooled single crystal sample mount capable of tuning surface temperature between 19 and 1337 K, a Kelvin probe for non-destructive work function measurements, a precision leak valve manifold for targeted adsorbate deposition, an inexpensive quadrupole mass spectrometer modified to perform high resolution temperature programmed desorption experiments and facilities to clean and characterize the surface
Communication: Bubbles, Crystals, and Laser-Induced Nucleation
Short intense laser pulses of visible and infrared light can dramatically accelerate crystal nucleation from transparent solutions; previous studies invoke mechanisms that are only applicable for nucleation of ordered phases or high dielectric phases. However, we show that similar laser pulses induce CO2bubblenucleation in carbonated water. Additionally, in water that is cosupersaturated with argon and glycine, argon bubbles escaping from the water can induce crystal nucleation without a laser. Our findings suggest a possible link between laser-induced nucleation of bubbles and crystals
Imaging covalent bond formation by H atom scattering from graphene
Viewing the atomic-scale motion and energy dissipation pathways involved in forming a covalent bond is a longstanding challenge for chemistry. We performed scattering experiments of H atoms from graphene and observed a bimodal translational energy loss distribution. Using accurate first-principles dynamics simulations, we show that the quasi-elastic channel involves scattering through the physisorption well where collision sites are near the centers of the six-membered C-rings. The second channel results from transient CâH bond formation, where H atoms lose 1 to 2 electron volts of energy within a 10-femtosecond interaction time. This remarkably rapid form of intramolecular vibrational relaxation results from the C atomâs rehybridization during bond formation and is responsible for an unexpectedly high sticking probability of H on graphene
Comparing Petri Net and Activity Diagram Variants for Workflow Modelling:A Quest for Reactive Petri Nets
Petri net variants are widely used as a workflow modelling technique. Recently, UMLa ctivity diagrams have been used for the same purpose, even though the syntax and semantics of activity diagrams has not been yet fully worked out. Nevertheless, activity diagrams seem very similar to Petri nets and on the surface, one may think that they are variants of each other. To substantiate or deny this claim, we need to formalise the intended semantics of activity diagrams and then compare this with various Petri net semantics. In previous papers we have defined two formal semantics for UMLact ivity diagrams that are intended for workflow modelling. In this paper, we discuss the design choices that underlie these two semantics and investigate whether these design choices can be met in low-level and high-level Petri net semantics. We argue that the main difference between the Petri net semantics and our semantics of UML act ivity diagrams is that the Petri net semantics models resource usage of closed, active systems that are non-reactive, whereas our semantics of UMLact ivity diagrams models open, reactive systems. Since workflow systems are open, reactive systems, we conclude that Petri nets cannot model workflows accurately, unless they are extended with a syntax and semantics for reactivity
Boosting hot electron flux and catalytic activity at metal-oxide interfaces of PtCo bimetallic nanoparticles
Despite numerous studies, the origin of the enhanced catalytic performance of bimetallic nanoparticles (NPs) remains elusive because of the ever-changing surface structures, compositions, and oxidation states of NPs under reaction conditions. An effective strategy for obtaining critical clues for the phenomenon is real-time quantitative detection of hot electrons induced by a chemical reaction on the catalysts. Here, we investigate hot electrons excited on PtCo bimetallic NPs during H-2 oxidation by measuring the chemicurrent on a catalytic nanodiode while changing the Pt composition of the NPs. We reveal that the presence of a CoO/Pt interface enables efficient transport of electrons and higher catalytic activity for PtCo NPs. These results are consistent with theoretical calculations suggesting that lower activation energy and higher exothermicity are required for the reaction at the CoO/Pt interface
- âŠ