560 research outputs found
Break-up of shells under explosion and impact
A theoretical and experimental study of the fragmentation of closed thin
shells made of a disordered brittle material is presented. Experiments were
performed on brown and white hen egg-shells under two different loading
conditions: fragmentation due to an impact with a hard wall and explosion by a
combustion mixture giving rise to power law fragment size distributions. For
the theoretical investigations a three-dimensional discrete element model of
shells is constructed. Molecular dynamics simulations of the two loading cases
resulted in power law fragment mass distributions in satisfactory agreement
with experiments. Based on large scale simulations we give evidence that power
law distributions arise due to an underlying phase transition which proved to
be abrupt and continuous for explosion and impact, respectively. Our results
demonstrate that the fragmentation of closed shells defines a universality
class different from that of two- and three-dimensional bulk systems.Comment: 11 pages, 14 figures in eps forma
Fuel cell crimp-resistant cooling device with internal coil
A cooling assembly for fuel cells having a simplified construction whereby coolant is efficiently circulated through a conduit arranged in serpentine fashion in a channel within a member of such assembly. The channel is adapted to cradle a flexible, chemically inert, conformable conduit capable of manipulation into a variety of cooling patterns without crimping or otherwise restricting of coolant flow. The conduit, when assembled with the member, conforms into intimate contact with the member for good thermal conductivity. The conduit is non-corrodible and can be constructed as a single, manifold-free, continuous coolant passage means having only one inlet and one outlet. The conduit has an internal coil means which enables it to be bent in small radii without crimping
Coupled DEM-LBM method for the free-surface simulation of heterogeneous suspensions
The complexity of the interactions between the constituent granular and
liquid phases of a suspension requires an adequate treatment of the
constituents themselves. A promising way for numerical simulations of such
systems is given by hybrid computational frameworks. This is naturally done,
when the Lagrangian description of particle dynamics of the granular phase
finds a correspondence in the fluid description. In this work we employ
extensions of the Lattice-Boltzmann Method for non-Newtonian rheology, free
surfaces, and moving boundaries. The models allows for a full coupling of the
phases, but in a simplified way. An experimental validation is given by an
example of gravity driven flow of a particle suspension
Simulation of flow of mixtures through anisotropic porous media using a lattice Boltzmann model
Abstract.: We propose a description for transient penetration simulations of miscible and immiscible fluid mixtures into anisotropic porous media, using the lattice Boltzmann (LB) method. Our model incorporates hydrodynamic flow, advection-diffusion, surface tension, and the possibility for global and local viscosity variations to consider various types of hardening fluids. The miscible mixture consists of two fluids, one governed by the hydrodynamic equations and one by advection-diffusion equations. We validate our model on standard problems like Poiseuille flow, the collision of a drop with an impermeable, solid interface and the deformation of the fluid due to surface tension forces. To demonstrate the applicability to complex geometries, we simulate the invasion process of mixtures into wood spruce sample
Mechanisms in impact fragmentation
The brittle fragmentation of spheres is studied numerically by a 3D Discrete Element Model. Large scale computer simulations are performed with models that consist of agglomerates of many spherical particles, interconnected by beam-truss elements. We focus on a detailed description of the fragmentation process and study several fragmentation mechanisms involved. The evolution of meridional cracks is studied in detail. These cracks are found to initiate in the inside of the specimen with quasi-periodic angular distribution and give a broad peak in the fragment mass distribution for large fragments that can be fitted by a two-parameter Weibull distribution. The results prove to be independent of the degree of disorder in the model, but mean fragment sizes scale with velocity. Our results reproduce many experimental observations of fragment shapes, impact energy dependence or mass distribution, and significantly improve the understanding of the fragmentation process for impact fracture since we have full access to the failure conditions and evolutio
- …