7,980 research outputs found

    Heat flow control and segregation in directional solidification: Development of an experimental and theoretical basis for Bridgman-type growth experiments in a microgravity environment

    Get PDF
    Within the framework of the proposed research, emphasis was placed on application of magnetic fields to semiconductor growth systems. It was found that magnetic fields up to 3 kGauss do not affect the growth behavior nor the macro-segregation behavior in the system Ge(Ga). Applied fields are found to significantlty alter the radial dopant distribution, which is attributed to alterations in the spatial orientation of convective cells. Increasing the magnetic field to 30 kGauss is found to have a fundamental effect on dopant segregation. Emphasis is also placed on the potential of KC-135 flights for preliminary studies on the effects of reduced gravity environments on the wetting behavior of semiconductor systems in growth configuration. The limited number of experiments conducted does not allow any conclusions on the merits of KC-135 flights for semiconductor processing research

    New outlook on control of crystalline and chemical perfection during growth of silicon

    Get PDF
    Significant progress has been made in our understanding of the Czochralski crystal growth process with the realization that the incorporation of oxygen into silicon is directly related to the internal gettering capability of wafers during device fabrication. It was also recognized that the electronic properties exhibited by silicon during various stages of device fabrication were significantly affected by the thermal history of the silicon during the post-growth cool-down period. Turbulent melt convection, induced by unavoidable destabilizing thermal gradients, was found to interfere with homogeneous dopant (and oxygen) incorporation and to influence markedly the dynamics of nonequilibrium point defects in the solidified silicon matrix during the cool-down period. In view of the unavoidability of destabilizing thermal gradients in conventional crystal growth configurations, melt stabilization through the application of magnetic fields is generally considered a viable approach. Control of heat input to the melt through heat pipe systems, as used during growth of germanium, cannot be applied to industrial growth of silicon. Recent studies have shown that heat exchange systems located coaxially about a growing crystal can be used to stabilize and control not only heat transfer in the grown crystal, but also in the melt adjacent to the solidification interface

    Growth and characterization of binary and pseudo-binary 3-5 compounds exhibiting non-linear optical behavior. Undergraduate research opportunities in microgravity science and technology

    Get PDF
    In line with the specified objectives, a Bridgman-type growth configuration in which unavoidable end effects - conventionally leading to growth interface relocation - are compensated by commensurate input-power changes is developed; the growth rate on a microscale is predictable and unaffected by changes in heat transfer conditions. To permit quantitative characterization of the growth furnace cavity (hot-zone), a 3-D thermal field mapping technique, based on the thermal image, is being tested for temperatures up to 1100 C. Computational NIR absorption analysis was modified to now permit characterization of semi-insulating single crystals. Work on growth and characterization of bismuth-silicate was initiated. Growth of BSO (B12SiO20) for seed material by the Czochralski technique is currently in progress. Undergraduate research currently in progress includes: ground based measurements of the wetting behavior (contact angles) of semiconductor melts on substrates consisting of potential confinement materials for solidification experiments in a reduced gravity environment. Hardware modifications required for execution of the wetting experiments in a KC-135 facility are developed

    Indium antimonide crystal growth experiment M562

    Get PDF
    It was established that ideal diffusion controlled steady state conditions, never accomplished on earth, were achieved during the growth of Te-doped InSb crystals in Skylab. Surface tension effects led to nonwetting conditions under which free surface solidification took place in confined geometry. It was further found that, under forced contact conditions, surface tension effects led to the formation of surface ridges (not previously observed on earth) which isolated the growth system from its container. In addition, it was possible, for the first time, to identify unambiguously: the origin of segregation discontinuities associated with facet growth, the mode of nucleation and propagation of rotational twin boundaries, and the specific effect of mechanical-shock perturbations on segregation. The results obtained prove the advantageous conditions provided by outer space. Thus, fundamental data on solidification thought to be unattainable because of gravity-induced interference on earth are now within reach

    Solidification (crystal growth) in the presence of gravitational forces

    Get PDF
    The surface tension behavior of doped and undoped InSb melts was investigated as well as their temperature and composition dependence. Surface tension in InSb melts was determined using the sessile-drop technique covering the temperature range from 530 C to 880 C. A linear regression of the data obtained shows that the temperature dependence of sigma is 392- (T-530) x (7000) plus or minus 10 dyne/cm. The d sigma/d Tau for intrinsics InSb is less than that previously reported. On the basis of the surface tension data obtained, it is concluded that surface tension induced convective flow velocities in InSb under reduced gravity conditions range from zero to at most 1 cm/sec. Accordingly, no interference with dopant segregation can be expected during growth in space because the momentum boundary layer (at the crystal melt interface) associated with any Marangoni-type convective flows would, at the given growth rate, be significantly larger than the predicted diffusion boundary layer thickness

    Preparation of homogeneous vitreous materials for electronic and optical devices

    Get PDF
    Vitreous material builds up as series of solidified layers on inside walls of sealed quartz ampoule containing molten constituents of material, and forms well defined shapes to close dimensional tolerances. Ampoules are made of material which does not react with melt and has lower thermal expansion coefficient than solidified layer

    Recursive Calculation of Effective Potential and Variational Resummation

    Full text link
    We set up a method for a recursive calculation of the effective potential which is applied to a cubic potential with imaginary coupling. The result is resummed using variational perturbation theory (VPT), yielding an exponentially fast convergence.Comment: Author Information under http://www.physik.fu-berlin.de/~kleinert/institution.html Latest update of paper (including all PS fonts) at http://www.physik.fu-berlin.de/~kleinert/350

    Speedy Fred Taylor and the Ironies of Enterprise Liability

    Get PDF
    Neither the academic literature nor the tort reform lobby has observed a deep irony in the American law of enterprise liability. The intellectual roots of enterprise liability lie in a late nineteenth-century movement to reengineer the workplace, a movement whose best known exponent was scientific manager Frederick Winslow Taylor. Along with a generation of managerial engineers, Taylor popularized broad ideas about managerial responsibility for the operations of enterprise—ideas that when loosed on the decentralized institutions of American tort law ultimately found one of their strongest expressions in the law of enterprise liability. Enterprise liability thus stands as one of the great twentieth-century examples of the unanticipated consequences of social action

    Constraint, Authority, and the Rule of Law in a Federal Circuit Court of Appeals

    Get PDF
    One hundred and twenty-five years ago, during the little-remembered presidency of Benjamin Harrison, Congress put in place one of the building blocks of our modem legal system. The Evarts Act, signed into law in 1891, created a new Article III federal court for the first time since the ill-fated and short-lived Midnight Judges Act of 1801

    The Klan on Trial

    Get PDF
    • …
    corecore