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INDIUM ANTIMONIDE CRYSTAL GROWTH

SUMMARY |

The analysis of the InSb erystals grown durlng the Skyiab ITT and
Skylab IV missions established unambiguously that ideal diffusion controlled
steady state conditions, never achieved on earth in mactroscopic dimensions,
were attained during growth in the absence of gravitational forces. In
addition, the results made it possible, for the first time, to ideqtify:

(a) the origin cf segregation discontinuities associated with facet growth;

(b) the mode of nucleation and propagation of rotational twin boundaries;

{¢) the effects of mechanical shock perturbation on dopant segregation. The
experiments revealed, furthermore, that surface tension effects of the doping
element are critical for the mode of solidification in confined geometry.

Thus, it was found that the preseﬁce of tellurium dopant in Indium Antimonide
led to non-wetting conditions between themeélt and the quartz container; as

a result, "f.ce surface" solidification took place in a confined geometry.

Under "forced contact" conditions, surface tension effects led to the forma-
tion of surface ridges (not previously observed on earth) which effectively
isolated the growth system from its container. WNo evidence of bulk convection
in the melt as predicted on thé basis of the Marangoni efféct (perturbations due
to surface tension gradients) could be found in any crystal grown on Skylab.

The quantitative analysis of the transition regions in the initial regrowth
segments performed by Hall measurements and ion-microprobe measurements
indicated that equilibrium segregation and solute diffusion data can readily

be obtained from solidification experiments performed in the absence of gravity,

provided the microscopic growth rate is known. The results of the InSh growth



experiments on Skylab demonstrate the unique advantages of gravity-free

outer space on crystal growth and solidification in general.

GENERAL REMARKS

The salient results, obtained to date, are given in this final report
essentially as presented at the Third Space Processing Symposium, Skylab
Results, April 30-May 1, 1974, Marshall Space Flight Center, Alabama. Addi~
tional pertinent information on materials, results of ground-based tests,
analytical procedures and techniques are presented in the ferm of appendices.

It is believed that further basic data will be obtained from the space-grown
material as our understanding of sclidification is advanced and more sensitive

analytical techniques become available.

OBJECTIVES

The InSb crystal growth experiment (M~562) was conceived to study trhe
following basic assumptions: (a) Crystal growth from the melt in the absence
of gravitational forcea takes place without thermal convection and results in
exclusively diffusion controlled segregation; accordingly, steady state growth
and segregation can be achieved in space and the resulting material should
exhibit composirional homogeneity on the micro- and macroscale. (b) Funda-
mental, as yet not available, data on solidification can be obtained from
the analysis of crystals grown under near zero gravity conditions; such data
will help bridge the gap between theory and experiment and should lead toward
optimization of materials processing technology which at present is based

largely on empiricism,
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It was also expected that the experiment would demonstrate any effects
of surface tension forces on crystal growth and segregation, thought to be
detrimental in the absence of gravitational forces.

The presentréxperiment involved growth of undoped, Te-doped and Sn~doped
InSb; it was designed to permit the direct comparison of the basic character-
istiecs of growth on eaxth and'in space by meltiné and resolidifying in space

a portion of crystals grown on garth.
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STEADY-STATE GROWTLI AND SEGREGATION UNDER.ZERO GRAVITY: InSb*
A. F. Wite, H., C. Gatos, M. Lichtensteiger,
M. €, Lavine, C. J. Herman

Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

ABSTRACT

It was established that ideal diffusion controlled steady state
conditions, . never accomplished on earth, were achieved during the growth
of Te-doped InSb crystals in Skylab. Surface tension effects led to non-
wetting conditions under which free surface solidification tock plaqe in
confined geometry. It was further found that, under forced contact condi-
tions, surface tension effects led to the formation of surface ridges
(not previously observed on earth) which isolated the growth system from
its container. ! In addition, it was possible, for the first time, to
identify unambiguously: the origin of segregation discontinuities associ~:
ated with facet growth, the mode of nucleation and prqpagation of rota-
tional twin boundaries, and the specific effect of mechanical-shock
perturbations on segrégétion. R

The results obtained prove the advantageous conditions provided by
outer space. Thus, fundamental data on solidification thought to be un-

attainable because of gravity-induced interference on earth are now within

‘reach.

INTRODUCTION

Structural and compeositional control during solidification of materials
is impeded by gravity-induced effects in the melt. Thermal gradients neces-
sary for crystal growth lead, In the presence of grav1tatlonal forces, to

Pages 1-24, as presented at the Third Space Proce551ng Symp051um, Skylab
Results, April 30-May 1, 1974.
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therﬁal convection which in general causes uncontrolled varjations in the

solidification rate and in diffusion boundéry layer thickness; such varia-
tions lead directly to periodic and/or random microscopic and macroscopic

segregation inhomogeneities. Furthermore, in the presence of gravity, ‘
establishing steep thermal gradients, often required to prevent constitu-

tional supercooling, is impossible and consequently interface breakdown is
unavoidable. |

Gravity effects are, thus, primarily responsible for the present lack
of reliable solidification data and the existing gap between theory and
experiment. Consequently, crystal growth and associated segregation phenomena
are still based on empiricisﬁ, and the properties and performance of solids
are not at their theoretical limits,

Gravity-free conditions made accessible though the space program of
NASA provide a unique opportunity to obtain reliable crystal growth data and,
therefore, . advance our quantitative understanding of solidification pro-~
cesses; in addition this program makes possible the exploration and assessment
of the potential of outer space for materials processing..

Indium antimonide was chosen for the présently reported Skylab experiment
because its relatively low melting point (525°C) made the experiment compatible
with the available electrical power. In addition, chemical etching, the
only high-resolution technique available, at the time, for the study of
segregation inhomogeneities on a microscale, had been developed on InSb to
its most advanced level, |

The experiments performed during the Skylab-III and ~IV missions
included the growth of undoped, tellurium-doped, and tin~doped indium
“antimonide. The present report is concerned primarily with results obtained

cn teliurium-doped InSb.
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OBJECTIVES

The objectives of growing Te-doped InSbh in Skylab were to confifm the
advantages of zero-gravity environment, to obtain basic data on solidifica-
tion, and to explore the feasibility of electronic materials processing iﬂ
outer space. Thus, the experiment was designed to gchieve difquion—coptrolled,
steady-state solidification énd to investigate the associated growth segrega—'
tion behavior on a micro-.and macro-scale. Direct comparison of growth and
segregation on earth and in spacé was to be achieved by melting and resolidi-

-

fying in space a portion of each crystal grown on earth,

EXPERIMENTAL APPROACH

Crystal Growth Apparatus

The InSb growth experiment was carried out in the "wultipurpose furnace"
(Fig. 1) designed and constructe& by Westinghouse Electric Corporation. The
furnace provides for three tubular cavities into which-three stainless 1téel
cartridges containing the erystal growth assemblies are inserted. Heat
levelers, lateral heat-shields, and the heat extractor plate insure controlled
heat flow from the heating element‘td the heat extractor plate through the
crystal. Melting is initiated at the end of the crysfal (to be referred to
as hot end), located inside the_heat;ng element and the crystal-melt interface
is advanced to the desired pesition (bacﬁ—melting) by appropriate power input.
Regrowth, in turn, is achieved by controlled power reduction.

From heat transfer calculations and ground-baséd growth experiments, it
was concluded that, in Skylab, a power input of 99 watts to the furnace'con-
taining three encapsulated inSb crystals should result in a melt zone approxi-

mately 6 cm long, with an initial thermal gradient of about 46°C/cm.
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In ground-based tests it was found that the morphology of the crystal-
melt interface was slightly concave (viewed from the melt). No predicrion
could be made, however, about the growth interface morphology under zero
gravity conditions since the wetting characteristics of InSb melts and thé

associated radial heat transfer behavior was not known.

Crystal Preparation and Assembly

Indivm antimonide used for ground-based tests and the Skylab experiment
was synthesized in the Electronic Materials Laboratory at M.L.T. The single
crystals for the experiment were pulled from the melt in the <111> direction
by the Czochralski technique. The as~-grown crystals {(approximately 1.8 cm in
diameter and 17 cm long) were cente%less ground to a diameter of 1.4 c¢m, and
cut to a length of 11 ecm. The cylindrical crystals were etched in modified

CP-4 (3 parts HF + 5 HNO, + 3 CH COOH + 10 H,0) to remove surface damage and

3
reduce their diameter to the desired value. Each crystal was subsequently
inserted beti:zen graphite spacers into a quartz ampoule.of 3 mm wall thickness.
The diameter of every crystal wag 0.13 mm smaller than the‘inside diameter of
its ampoule.

The spacer at the hot end had a peripheral cylindrical cavity to provide
additional space for the melt in case unforeseen surface tension effects under
zero gravity conditions resulted in increased clearance between the regrown
crystal and the quartz wall; the cylindrical graphite spacer at the other end
of the crystal (tc be referred to as cold end) was designed to enhance heat
transfer from the crystal to the heat extractor plate. The crystals were

positioned in the ampoules se that their B <111> direction coincided with

the regrowth direction.
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All ampoules were repeatedly flushed with purified helium and evacuated'
to ].O'-7 torr prior to sealing. The c¢rystals were anchored near théir cold end
to the ampouies by means of a small depression in the.quartz wall formed by
local heating‘of‘the evacuated ampoules. .

Each sealed amﬁoule was encapsulated by thé Westinghouse Electric Corpora-
tion in an evacuated stainless steel cartridge and subjected to simulated launch
and re-entry conditions; they were sﬁbsequenfly exémined by radiography. Cne
set of three cartridges containing an undoped crystzl, a Te~doped crystal
Chlolsfcma) and a heavily Sn-doped crystal (m1020/¢m3) was selected for the
zero gravity growth experiment (Skylab~III mission). A second set w;s selected
for back-up purposes and was eventually used in an uﬁscheduled second experi-
ment in space (Skylab-1V mission). A sealed ampoule and its metal cartridge

used in the Skylab éxperiment are shown in Fig. 2.

Crystal Growth Procedure in Space

Skylab—-111 Mission Experiment: The samples were inserted into the wulti-

purpose furnace and back-melting was initiated By turning onrthe power. The
desired back-melting was acﬁieved in 120 minutes. Then the system was kept

at temperature for a period of 60 minutes (soaking peried), to achieve thermal
equilibrium in the system and homogenization of the melts.* Subsequently,

a cooling rate of 1.17°C/min was established by controlled power reduction

at intervals of 14.4 sec. Four hours after initiation of regrowth the power
was turned off and passive cooling to the ambient temperature took place.

The thermal history of the growth system {(hot end témperature) obtained from

a chromel/alumel thermocouple in the furnace is shown in Fig. 3.

*
A soaking period of 180 minutes was originally specified for this purpose;
however, an inadvertent power shortage necessitated the reduction of the
soaking period to 60 minutes. '



-6 -

Skylab-IV Mission Experiment: The remelting and thermal soaking pro-

cedure was identical with that of the Skylab-I1I1 experiment. However, in

this {(originally scheduled) experiment the growth system was subjected to

a mechanical shock by striking the furnace assembly at a predetermined time;
furthermore, the constant cooling rate of 1.17°C/min was interrupted 140
minutes after initiation of regrowth and a second thermal soaking period of

60 minutes was introduced by maintaining the furnace power at a constant level,
The power was subsequently turned off and the system was allowed to reach
ambient temperature (see Fig. 3). These changes in the growth procedure were
intended to provide time reference markings in the crystal and to c¢btain

data on the dependence of transient segregation on growth rate.

RESULTS AND DISCUSSION

The extent of regrowth achievéd during the Skylab experiment was virtually
the same for all crystals (about 6 cm) and in excellent agreement with theore-
tical calculations and ground-based testin;; in each crystal the regrowth
-interface was clearly delineated (see for example Fig. 2). |

Before proceeding with the analysis of the Te~doped crystals, it is of
interest to discuss briefly the morphological characteristics of the Sn-doped
and undoped crystals. The space-grown segments of the two Sn-doped crystals
are shown in Fig: 4; the regrowth interface is clearly seen on the left~hand
slde of the figure. In both instances (as in the case of undoped InSbh) the
crystal surfaces, viewed through the guartz ampoule, are smooth and highly
reflective, indicating that they formed in intimate contact with the confining
~ walls. The presence of randomly distributed cavities of varying size,
attributed to entrapped gas, indicates that the welt was also in intimate

contact with (wetted) “he quartz walls. The morphological characteristics
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of the two crystals are identical; differences in phase (Sn) segregation

are associated with differences in growth conditions,

‘MORPHOLGGICAL CHARACTERISTICS

All crystals were separated from their containers, without affecting
their morphological characteristics, by dissolving the quartz ampoules in
48% HF.

The two Te—doped.InSb crystals will be discussed individually since

they exhibit seemingly significant differences in morphological characteristiecs.

Tellurium-Doped InSb Grown in Skylab-III

This crystal was of the same diameter as the.earth—growth segment (seed),
two portions of which are shown in Figures 5 and 6; they correspond to the
early and late stages of grow;h,_respectively. The surface of the crystal, in
contrast to that of the Sn-doped and undoped crystals; has a dull appearance
which indicates that during growth it did not establish contact with th: con-
fining quartz wall. This conclusion is reinforced by the absence of peripheral
cavities which generally characteri;e growth under confined'geometry.

The surface of the regrown crystal in the vicinity of the seed (Fig. 55
exhibits several bands of differing width oriented normal to the growth
direction. These bands were identified as the external boundaries of rota-
tional twins (see below) which are frequently encountered in InSb growa in
the <111> difection.

Conspicuous in-Fig. 6 is the presence of irreguiarly spaced "surface
ridges" oriented preferentially in the direction of growth (left to right).
The ridges are shiny at the top indicating contact with the quartz wall; they
are, on average, 25 ym high and increase in width towards the hot end 6f the

erystal, Over the last 10 mm of the crystal the ridges become irregular and
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branch out. The regions between the ridges exhibit, in general, the charac-
teristics of growth from free (unconfined) melts. 1In some isolated areas
inclined lines, which have the appearance of stress—induced defects, originate
at the surface ridges. These defects were shown to be confined to the 5urface
region and to have no derectable effects on the growth and segregation behavior
of the system. To the authors' knowledge, the phenomenon of surface ridge
formation has not been previously observed in solidification under confined

geometry; it will be further discussed below.

Tellurium~Doped InSb Grown in Skylab-IV

As seen in Fig. 7, regrowth, following the thermal soaking period,
proceeds (top to bottoﬁ) first with decreasing and then essentially comnstant
crystal diameter. With continuing growth the crystal diameter decreases, again,
then increases and assumes a constant value of 12.8 mm ( bottom of
Fig. 7) which is the same as that of the ¥.D. of the confining quartz ampoule,
(The reasﬁns for the differences in diameter between the two Te-doped crysﬁals
in the early stages of regrowth will be discussed below.)

From volume considerations, it is concluded that the increase of the
crystal diameter, with continuing growth coincides in time with the initial
contact of the melt with the graphite spacer at the end of the quartz ampoule.
Since crystal growth over the first 30 mm proceeded with a decreased diameter,
and solidification of InSb is accompanied by a volume expansion of 12.9%, the
volume available to the residual melt is less than during the Skylab-IIl
experiment at the same time in growth, Thus, towards the final stages of
solidification some melt was ultimately forced into the peripheral cavity
availahle in the hot-end graphite spacer. Indium antimonide solidified in
the spacer cavity welghed 2.52g. Accordingly, the total available volume for

the melt in the ampoule ftself {excluding the volume of the cavity in the
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graphite spacer) was occupied after the cryétal had reached a length of

34 pm, j.e., 5 mm after the crystal diameter reached its maximum value.
Since the clearance between the spacer and the quartz wall was less than
0.25 mm, the melt waé under substantially increaséd pressure dufing the

last 25 mm of growth. This increased pressure, however, did not lead to
forced wetting between the melt and the quartz wall since contact between
the crystal and the wall remained confined to the surface of‘the.irregularly
spaced ridges as in the Skylab-IIi crystal.

. The surface characteristics of the crystal growvn with a diameter smaller
than the I.D. of the ampoule are typical of free~surface solidification. They
afe identical with those encountered bétween the surface ridges in the Skylab-
III crystal and.are similar to those observed on crystals‘grown by the
Czochralski technique on earth. |

Figure 8 shows the surface characteristics of the crystal portion grown
with constant veduced diameter at a distance of about 10 mm from the initial
regrowth interface; the surface irregularities are the same as those commonly
observed in non-faceted crystal growth from the melt. In addition, randomly
spaéed lines oriented normal to the <111> growth direction are visible. These
lines are not continuous over the whole periphery and are confined to the
th;ee relatively flat portions of the crystal surfaée. They are not present
on the centrally located "white" band which was identified as a rotational
twin {see also below). .

It is of interest to note that the crystal portiOn with a reduced
diameter does not exhibit surface ridges observed on the previously discussed
ecrystal. Surface ridges do, however, appear as the crystal diameﬁér increaées

and approaches the value of the I.D. of the ampoule. Details of surface ridge

1
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patterns are shown in Fig. 9. The ridges in this crystal are of the same
height as those on the crystal grown in Skylab-IIL (25 m); here agaln
they have no mca5uraﬁle effect on growth and segregation in the bulk of the
crystal. They appear, however, less oriented along the growth direction and
more branched. From the propagation patterns of these ridges, it is
concluded that they are not the result of anomalous golidification, but,.
rather, that they are formed on the melt prior to solidification.

S0 far all attempts to account for ridge formatijon on the basis of
known phenomena, such as wetting and convection induced by surface tension

gradients, have met with fundamental inconsistencies,

Bulk Characterization

The bulk characterization of the space-grown crystals was aimed
primarily at the growth and segregation behavior employing various analytical
techniques. For this purpose the crystals were sectioned as shown in Fiz. 10.

Dopant Segregation

The analysis of dopant segregation by high resolution differential
etchiﬁg was carried out on longitudinal sections of (211) s;rface orientation
(see Fig. 10). All crystal sections were polished with Syton and etched for
40 secqnds in a solution of 1 HF(48%) and 1 CHSCOOH (glacial) + 1 KMnO4 (satu-
rated aqueous solution); they were subsequently rinsed, dried in purified
nitrogen and studied by means of interference contrast microscopy.

The striking difference in dopant segregation during growth under the
influence of gravity and under zero gravity conditions is evident in Fig. 11
where a portion of earth-grown (upper part) and space-grown crystal (lower
part) is ~hown. Compositional inhomogeneities which characterize the earth-
grown segment (including pronounéed coring effect) are absent in the segment

grown in space. Tt is further seen that the regrowth interface morphology,
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established during thermal soaking, 1s concave (viewed frﬁm the melt).

The sharp demarcation liqe separating the earth- and space~grown segment
is the result of an abrupt deérease ia Te coﬁcentration which 1s dictated,
for initial regrowth, by the thermodynamic characteristics of the system, i.e.,
the distribution coefficient, ko of Te in InSb is less than one (ko = QS/CL< 1,
where CS and CL are the concentration of Té in the solid and the melt, respec-
tively).

The microscopic segregation behavior for the peripheral part of the
crystal in the vicinity of the regrowth interface (right-hand side of Fig. 1l)
is shown in Fig. 12. Pronounced segregation fluctuations (compo;itional inhom-~
ogeneities) in the earth~grown segment reflect irregular variations in growth
conditions which are due to rotation effects and to uncontrolled gravity-
induced thermgl coﬁvection in the melt. No microscopic compositional fluctua-
tions are present in the crystal segment grown in space. In the central part
of-the crysta . also (fig. 13) irregular microsegregation'variations are present
in the_earth—grown segment but not in the correspouding space-grown segment.
The segregation behavior in the equivalent region of the crystal grown during
the Skylab-III mission was identical to the behavior presented above.

According to theory, the area of the space-grown region shown in Fig.rl3
must be part-‘of’a transition region over yhich the dopant concentration inf
creases continuously until it reaches the same valqe‘as that of the dopant
concentration present in the bulk of the melt; at this point steadyQState
segregation ;onditions are established and the dopan£ concentration in the

solid remains constant except at the very‘terminal stage'of solidification.

Quantitative Dopant Segregation Analysis

Since one of the major objectivec of the Skylab experiment was to achieve
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steady-state sepregation, quantitative dopant concentration analysis of the
transition region was undertaken by means of Hall«~effect measurements and
ion-microprobe scanning.

Hall-effect measurements were carried out by the Van der Pauw technique
in a 6" field-regulated electro-magnet éﬁploying a constant current source
and a calibrated, high impedance micro-volt detector. The Hall-effect samples
were squares 2 mm x 2 mm and 0.5 wm thick. Quadrant-shaped silver contacts
were evaporated at the four corners of each sample and were annealed at
350°C for two hours to ensure ohmic behavior. Subsequently, gold wire leads
were soldered with indium onto the contacts {Fig. 14). More than thirty
individual Hall-effect measurements (at different field strengths) were carried
out on each sample to optimize the validity of the data. The reproducibility
of the results was better than one per cent.

Hall—-effect measurements weré carried out on the Te-doped crystal grown
in the Skylab-III mission. Twelve successive crystal slices, 0.5 owm thick,
were cut, as shown in Fig. 10. Two adjaceut Hall-effect samples (2 mm x 2 m)
were chosen from each slice, in most instances near the central part of its
straight edge (corresponding te a central iocation in the crystal). For some
slices the Hall-effect samples could not be taken from the central location
gince twin or grain boundaries were present.

The compositional (carrier) profile together with the corresponding resis-
tivity and carrier mobility obtained at 77°K are shown in Fig. 15. Hali-effect
measurements on all samples were also performed at room temperature. The
room temperature data are not significantly different than those shouw— in
Fig. 15 in view of the relatively high level of carrier concentration.

The ecarrier concentration curve (N ) in Fig. 15 shows clearly the

space

decreased dopant concentration in the initial part of the space growth region,
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as predicted from theory; it delineates further the transieat region in which
the dopant concentration increases steadily and reaches its maximum value at
a distance of about 0.5 ¢m from the regrowth interface. Beyond this distance
the dopant conceﬁtration remains constant for the entire crystal length '
analyzed (5 cm); it is, thus, shown that ideal steady state segregation and
homogeneous dopant distribution was achieved under zero gravity conditions(
Ideal steady state segregation ﬁas never been achieved on earth. 1In the
ground-based tests performed in an identical experimental configuration and
under “"stabilizing thermal gradients” as seen in Fig. 15, the dopant brofile

for the ground-based experiment (N ) indicates clearly a steadily increasing

earth
dopant concentration which reflects the presence of convective interference
apparently due to convection caused by unavoidable lateral thermal gradients.
The ratio of the dopant concentration in the initially grown region and
in the steady state-grown region is a direct measure.of the équilibrium distri-
bution éoefficient, ko, which cannot be reliably deterﬁiﬁed on earth. Lﬁforw
tunately, the low spatial resolution of Hall-effect measurements does not
permit, a£ this time, the accurate determination of ko. From the widfh of the
region of transient segregation and the associated compositiomal change, the
diffusion coefficient of the dopant in the melt can be determined, provided
the microscopic growth rate is known and constant; this condition was not met
in the present experiment, since only the nominal growth rate is known.
It should be pointed out that the observed variation im carrier concen-
tration between adjacent Hall samples is not surprising since extensive twinaing
took place in this IﬁSb‘prystal in view of th; fact that its diameter was

the same as that of the confining wall and solidification is accompanied by

12.9 per cent volume expansion. In addition to twinning, growth under these
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conditions leads to high dislocation densities which account for the
measured relatively low, carrier mobilities. 1In contrast, in the crystal
grown during the Skylab-1IV mission, with a smaller diameter than that of the
duartz ampoule (unconfined solidification) the dislocation density was found
to be 40 per cent smaller than that in the earth-grown segment.

The compositional profile in the same crystal was in parallel investi-
gated by means of an ion microprobe analysis since this technique was expected
to provide a similar sensitivity as the Hall-effect measurements but a resolu-
tion in the micron range. Measurements carried out with a CAMECA, IMS 300 Ion
Analyzer and with an Applied Research Laboratory, Ion Microprobe Mass Analyzer
are essentially consistent with thé results of the Hall-effect measurements;
however, due to the relatively low yileld of sputtered Te-ions, the linear
resolution and accuracy were fqund to be limited. Thus, as seen in Fig. 16,
the precision of therion-microp}obe results with a scanning beam of 25 um was
only of the order of tlﬁ%.

Intentionally Introduced Segregation Discontinuities

As pointed out earlier, the growth process durxing the Skylab-IV mission
was perturbed 90 minutes and 140 minutes after initiation of the cooling cycle
by a mechanical shock and by an arrest of cooling, respectively; the cooling
arrest was sustained for a period of 60 minutes. These perturbations were
intended to introduce time reference markers in the crystal and to study their
specific effect on segregation behavior under steady state conditions.

Etching analysis of the crystal revealed the présence of only two dis-
tinct segregation discontinuities manifested as curved lines, extending over
the entire cross-section of the ecrystal, 15 mm and 28.8 mm from the initial

regrowth interface. As seen from the sketch in Fig. 17, the first discontinuity
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coincides with an abrupt decrease in crystal diameter and is of relatively
low intensity as viewed in interference contrast. The second discontinuity
-was formed after tﬁe cryutal had reached its maximum constant diameter;and
is very pronounced as seen in Fig. 18. - . .
" The nature of these segregation discontinuities was investigated_by‘

double beam interferometry. As seen in Fig. 19a, the first perturbation
(15 mm from the initial régrowth inturface) resulted in a small and localized
increase in teilurium concentration; on the other hand; the second perturba-
tion (Fig. 19b) resulted in a pronounced segregation discontinuity (dqcrease)
whicﬁ persistéd for an extended period of time. Thus, this second discontinuity
is unambiguously identified as a transient segregution region assouiated with
- regrowth following thermal soaking. Accordingly, the firsn short-lived,
segregation discontinuity is associated wiuh the mechanical shock.

Identification of the two sugregation discontinuities permits their use
as time markers for the determination of average microscoplc growth rates in -
two different portions of the crystal. Thus{ the average growth rate fiim
_the initial regrowth interface to the first discontinuity, 90 minutes into
.'.grouth; is found to be 2.8 um/sec and the growth rate from the first to the
sgcond discontinuity is 4.6 um/sec. The average growth rate over the first
'2.88 cm of growth {see Fig. 17) is 3.4 um/secu

The above growth behavior is cunsistent with theory: for the thermal
configuration in the multipurpose furnace the thermal gradient in the melt
is expected to decrease with continuing solidification'and consequently the
growth rate must correspondingly increuse. )

1t is of interest to note that the fringe deflection at'the second

compositional discontinuity (Fig. 19b) is constant over the entire crystal
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diameter. Since the fringe deflection 1is propertional to the concentration
change across the discontinuity and since the dopant concentratioﬁ in the
initial reprowth portion at the discontinuity (following thermal soaking)
must be constant across the crystal diameter, it must be concluded that the
tellurium concentration in the crystal above the discontinuity, which is
constant along the growth axis, (fringes parallel to the growth axis) must

also be constant in the radial direction.

Crystal Morphology

Asrdiscussed earlier, the surface morphological characteristics of
both space-grown c¢rystals indicate that the Te-doped InSb melt does not
wet the confining quartz wall. Accordingly, the contact angle between the
seed and the melt at the peripheral contact line is controlled by the inter-
facial tensions of the three phases involved and the meniscus of the melt
(which determines the shape of the growing crystal) becomes a function of the
radius of curvature of the crystal-melt interface. The'decrease in cryz.al
diameter observed during the early stages of growth in the Skylab-1V experi=-
ment {Fig, 7) is, thus, a direct conseguence of the pronounéed.concave con=~
figuration of the crystal-melt interface (as viewed from the melt) brought
about by the thermal characteristics of the system.

The ensuing gradual change to constant crystal diameter reflects the
decrease in lateral heat-transfer (due to the increasing distance of the
growing crystal from the quartz wall) which results in an increase of the
radius of curvature of the regrowth interface, The second decrease in
crystal diameter, which coincides with the intentional, mechanical-shock
perturbation, is attributéd to a deformation of the melt (stretching towards

the hot end) which established a melt menicus leading to decreasing crystal
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diameter. The subsequent increase in the diameéer of the crystal 1is due

to the fact that the volume available to the growth system becomes limited.
In the Skylab-III experiment the radius of curvature of the imnitial

- growth Interface was significantly larger than in the Skylab-IV experiment;

accordingly, the crystal diameter in the Skylab-III experimént conformed to

the size of the confining quartz wall.

Peripheral Facet Effect

!

Basic thermodynamic parameters are responsible for the fact that
during growth of InSb in the <111> direction a facet is generally formed at
" the growth interface. Since facet formation is associated with kinetic
supercooling, the facet is centr;lly located at convex: interfaces and
peripherally at concaw interfaces (as viewed from the melt). It is generally
believed that dopant segregation within facets is controlled by lateral layer
growth rate which is senéitive to thermal perturbations and gravity inducéd
convection. |
Consistent with the above considerations, peripheral facet formation
is cbserved in.béth space-grown crystals (Fig. 20) since in.both experiments
the growth interface assumed comcave morphology (Fig. i?). The well-defined
segregation discontinuities on the facet growm region camnot, however, be
explained on the basis of thermal and/or convective perturbations in the melt
since segregation in the bulk of the crystals was found to be homogeneous.
The observed segregation effects in the periﬁhexal facets can be |
explained by considering that kinetic supercooling for peripheral facet
formation assumes its highest value at the outermost part of the growth inter-
face, which thus becomes the location with the highest probability for

nucleation of lateral layer growth. Under these conditions, any perturbation,
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such as a vibration or the arrival of a foreilgn particle at the peripheral
three-phase contact line may trigger spurious nucleation of lateral layer
growth and, thus, result in the formation of the observed segregation discon-
tinuities. Their magnitude (intensity) is seen to decrease with decreasiné
supercooling from the periphery to the interior. Furthermore, depending on
their magnitude, the facet segregation discontinuities extend more or less
into the adjacent off-facet region; accordingly, it must be concluded that a
finite amount of kinetic supercooiing is associated with growth adjacent to
facet regions. There is some evidence that the raﬁdomly spaced lines wvigible
on the surface of the grown crystal (Fig. 8) correspond to the external
boundaries of the presently discussed facet segregation discontinuities.

It should be pointed out that the same type of facet segregation dis-
continuity has been observed superimposed on cowpositional inhomogeneities
in facet regions of earth-grown InSb; their origin could not, however, be

explained.

Rotational Twinning

The bands of varying width appearing on the leéft-hand side of the
crystal grown during the Skylab-III experiment (Fig. 5) were identified as
the external boundaries of (511) rotational twins. Each band is the result
of two consecutive rotations by 60° of the (111) plane normal to the g;owth
direction.

Anélysis of the rotational twins on etched crystal segments of (211)
surface orfentation (Fig. 21) shows that some propagate across the entire
crystal, some terminate within the crystal, and others deteriorate -to grain

boundaries, eventually leading to breakdown of the singlé crystal matrix,
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In view of the concaveinterface morphology, nucleaﬁion during growth
is essentially restricted to the outermost peripheral part of the growth
interface which, as discussed previously, is susceptible to spurious nuclea-
tion. Rotational twin formation initiated by a nucleus haviung a 60° misor—
ientation within the growth plane'can thus be explained as the result of
spurious ﬁucleation of the crystal periphery.

Because of inherent thermal asymmetry in the multi-purpose furnace, the
concave growth interface morphology is to some extent inclined to the growth
direction. Therefore, any misoriented nucleus formed at the lowest part of
the three-phase contact line (periphery of the growth interface) encounters no
constraints in propagating and results in the formation of a twin boundary'
‘which crosses the entire crystal. Spurious nucleation at any higher part of
the periphery, however, can propagate only through part of the crystal, since
a varying fraction of the plane of.propagation has solidified already in the
original orientation. Considering that a twin boundary cannot terminate
within the crystal, its directioﬁ of propagation must change to form a curved
grain boundary which may either terminate at a subsequently.nucleated twin
boundary or lead to a polycrystalline matrix (sée Fig. 21). It is of interest
to noté that the tendency of twin formation is strikingly reduced (only ome
rotational twin was observed) in the crystal grown with reduced diameter during

the Skylab-IV experiment.

CONCLUSIONS

The present InSbh experiment proves unambiguously the uniqueness of
zero~gravity conditions for obtaining directly fundamental data on-crystal

growth and segregation associated with solidification. Furthemrmore they
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demonstrate the striking advantages of processing materials in space.

Specifically the following results and conclusions were obtained for
the first time:

Ideal steady-state growth and segregation (exclusively diffusion
controlled) were achieved leading to three-dimensional chemical homogeneity
on a microscale over macro-scale dimensions (several centimeters in the present
case); the transient segregation profile preceding steady state solidification
was determined; limitations in the experimental arrangement and in the preseﬁtly
available microanalytical techniques do not permit, at this time, the.extrac-
tion of fundamentalldata ﬁertinent to seolidification,

Surface tension effects led to phenomena previously never observed md
theoretically not predicted: the Te-doped melt, not wetting the quartz wall,
solidified with a free surface (unponfined) configuration. Under forced
contact conditions, intimate contact between the melt and the confining walls
was prevented, and the growth system was essentially isolated from its container
by the formation of narrow surface ridges. It was also shown that surface
tension effects in space remained localized on the surface and did not affect
growth and segregation in the bulk.

In the absence of convective interference it was possible to identify
gsegregation discontinuities associated with facet growth and to explain their
origin on the basis of spurious nucleation, The absence of convective inter-
ference permitted, further, the determination of the mode of nucleation (forma-
tion of misoriented nuclei at the three-phase boundaiy 1ine) and propagation
of rotational twinning.

| A mechanical-shock pertﬁrbation intentionally introduced duriﬂg growth

was identified in the crystal and found to cause a localized increase in
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dopant segregation; this dopant discontinuity wés used as a time reference
for the determination of the average macroscopic growth rate.

On the basis of the present results it is no longer a matter of specu=-
lation that funéament;l data necessary for bridging the gap between theory.
and experiment can be reliably oﬁtained in the absence of gravity and that
" outer space presents one of the greatest opportunities evér afforded science

and technology.

ACKNOWLEDGEMENTS

The authors wish to express their appreciation to the Natiomal Aero-
nautics and Space Administration, and particularly to the Staff at the
Marshall Space Flight Center for their uncompromising efforts, cooperation
and enthusiastic support during all stages of the e#periment; Théy are
indebted tb Dr. K. M. Kim for carrfing out much of the ground-based testing,
to Drs. J. R. Carruthers and J. Colbey for stimulating giscussions and to
Mr. W. J. Ficzgerald and J. Baker for their skillful assistance with the
characterization program; Finally, the authors are grateful to Dr. R. K.
Lewis and the CAMECA Instruments, Inc., for their generosity in carrying

out lon-Microprobe Analyses of the crystal.



- 22 -

BIBLIOGRAPHY

The following bibliography is intended to provide pertinent background

information.

| J. C. Brice, "The Growth of Crystals from Liquids", North-Holland Publishing
Co., 1973.

B. Chalmers, "The Principles of Solidification™, J. Wiley; 1964.

J. J. Gilman, Editor, "The Art and Science of Growlng Crystals", J. Wiley,
1963.

P. f. Kane and G. B. Larrabee, "Characterization of Semiconductor Materials",
McGraw-Hill Book Company, 1970.

R, A. Laudise, "The Growth of Single Crystals", Prentice-Hall, 1970.

W. G. Pfann, "Zone Melting", 2nd ed., J. Wiley, 1966. |

D. P. Woodruff, 'The Solid-Liquid interface', Cambridge University Press,

1973,



23

Heating element .

Heat leveler.

‘ ;
‘ Stainless steel
cartridge

‘Quortz
ampoule

— Furnace chamber ~——

Figure 1 Sketch of the multipurpose
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Figure 2 Right: Quartz ampoule containing InSb crystal used in the Skylab
experiment; the cold-end graphite spacer, the earth-grown crystal
segment, the space-grown segment and the hot-end graphite spacer with a
peripheral cavity are seen from top to bottom; detached at bottom
is the graphite sleeve positioned between ampoule and the metal
cartridge. Left: Stainless steel cartridge in which ampoule

was encapsulated.
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Figure 3 '"Hot end" temperature cycles for Skylab-III and Skylab-IV

experiments as obtained from a chromel/alumel thermocouple.

Figure 4 Heavily Sn-doped InSb crystal grown in space during Skyiab-III (bot-
tom) and Skylab-IV missions contained in the quartz ampoules.

The initial regrowth interfaces are visible on the left-hand

side of the figure; 2.6x.
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Figure 5 Te-doped crystal grown during Skylab-III mission. Note initial
grovth interface (left-hand side), rotational twin bands and
sur e ridges propagating along the growth direction; the
diameter of the space-grown segment is the same as that of the

earth-grown segment; 4.9x.

Figure 6 Part of the Te-doped crystal, grown during Skylab-III mission,
3.7 to 5.9 cm from the initial regrowth interface. Surface
ridges broaden and branch out at the late stages of growth
(right-hand side); 6.8x.



Figure 7 Te-doped crystal grown during the Skylab-IV mission; note decrease
in crystal diameter upon initiation of growth; surface ridges

appear towards the bottom after crystal diameter reaches its

maximum constant value; 4.8x



Part of Te-doped crystal shown in Fig. 7; surface characteristics
are typical for unconfined solidification; note random distribu~
tion lines normal to the growth direction; rotational twin is

visible (white band); 19x.



Figure 9 Surface ridge patterns formed after crystal reached maximum
constant diameter during Skylab-IV experiment; note discontin-

uity in surface morphology associated with second thermal

soaking (see text); 21x.
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Figure 11 Etched cross-section (under dark field illumination) of
crystal grown during Skylab-IV mission; space-grown region
(bottom), in contrast to earth-grown region (top), exhibits

no compositional inhomogeneities; 12x.

periphery of

Figure 12 Dopant segregation characteristies near the
of Fig. 11);: 300=.

initial regrowth interface (right-hand side
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Figure 13 Dopant segregation characteristics near the central region of
initial regrowth interface of crystal grown during Skylab-IV
mission; 580x.
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Figure 14  Sample for Hall-effect measurements (Van der Pauw configuration).
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of 25 um superimposed on profile obtained by Hall-effect measure—
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Figure 17 Cross-section of crystal grown during Skylab-IV mission.
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Figure 18 Dopant segregation discontinuity caused by cooling arrest and

thermal soaking during growth in Skylab-IV mission; 400x.



(b)

Figure 19 Double beam interferograms of segregation discontinuities as
revealed by etching (a) caused by mechanical shock and (b)

caused by regrowth after thermal soaking (see text).
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Figure 20 Peripheral facet growth with segregation discontinuities in
crystal grown during Skylab-IV missicn; 300x.

Figure 21  Cross-section of crystal grown during Skylab-III mission exhib-
iting rotational twinning (see alse Fig. 5); 12x.



APPENDIX A

MATERIALS

_E@hm Atimonide:

The InSb used for ground-based tests and for all Skylab experiments
was synthesized from the elements (In and 'Sh, both 99.9999% pure) at
600°C in a hydrogen atmosphere (800 mm Hg). After solidification the

InSb was etched for three minutes in dilute CP-4 (5 parts conc. HNO3 +

3 parts 487 HF + 3 parts glacial CH,COOH + 7 parts HZO) and used in ingots

3
of 240 g for growth of the erystals required,

Dopant flements and Doping Procedure:

The dopaﬁt elements (Te, 99.9999% in ﬁowder form and Sn 99.9999% in

- pellet form) were directly added to‘the solid IﬁSb charge in the Czochralski
crystal puller. The amounts of dopant required to achieve average doping
levels of mlols/cm3 (Te) and MIOlglcm3 (Sn) were calculated, taking the

effective segregation coefficients as 0.8 and 0.05, respectively.

Graphite:

The graphite parts used were manufactured from A.T.J. grade graphite
(National Carbon). All parts, after‘machining, were fired at 1000°C in vacuum
(10 pym Hg) for two hours to remove wvolatile impurities. The following parts
were made of graphite: crucibles used for ingot preparation and for single
erystal growth (separate crucibles were employed for the growth of undoped,
Te-doped and Sn—dopedAmaterial); molds for the production of polycrystalline
InSh test-samples used during the preliminary stages of ground-based experiments
in the "SIM" and "prototype" furnaces; electrodes used for transmission of
current pulses across the crystal-melt sysfem to achleve growth interface
demarcatien during growth in the prototype multipurpose furnace; terminal

spacers used in the quartz ampoules to facilitate heat transfer (cold-end



- A2 -

spacer) and to provide additional volume for the melt {hot-end spacer).

guartz:

All ampoules-used to encapsulate the crystals were made of G.E. 204-
type quartz tubing with 3 mm wall thickness. ‘All quartz parts used for encap-
: .
sulation of the InSb crystals were etched with HF (48%), rinsed with distilled-

de-ionized water and dried im a jet of purified nitrogen.

Preparation of InSh Crystals Used for Ground-Based Testing amnd
Skylab Experiments:

A total of eighteen crystals were prepared and encapsulated into quartz
ampoules in connection with the Skylab experiment; of these, three were
polycrystalline samples used by Westinghouse for testing the prototype multi-
purpose furnace, The polycrystalline samples (one each undoped, Te-doped
and Sn-doped) were prepared in a modified Czochralski puller by melting the
ingot material in a suspended graﬁhite mold with the saie I.D. as the quartz
ampoules used for encapsulation. The graphite molds cqntainiug the molten
InSb were lowered through the heat zone ylelding polycrystalline ingots,
solidified under stabilizing thermal gradients at a rate of aﬁout 10 um/sec.
The ingots were removed from the molds, cut to the appropriate length, etched
in dilute CP-4 and encapsulated.

The single crystalline samples were grown in a Czochralski puller designed
and constructed at M.I.T. All crystals were pulled under seed rotation
(25 rpm) and counter crucible rotation (5 rpm}. The pulling rates were 2"/hr
for wundoped 1.3"/h for Te-doped and 3/4'Zh for Sn-doped material. All
crystals (approximately 1.8 cm in diameter and 17 cm long) were center-less
ground to a diameter of 1.32 cm and cut to a length of 11.0 em., Prior to
encapsulation the crystals weré etched in modified CP-4 to remove surface

damage and to reduce the diameter to the desired vaiue of 1.31 cm.
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The encapsulation procedure was as follows: Quartz tubes of the

appropriate length were cut from stock material and the designaﬁed "cold-end"
of the tube waé plugged with a quartz disc, sealed and squared off., After
cleaning, the cold-end graphite spacer, the etched crystal and the hot-end
spacer were inserted. Subsequently a prefabricated hot-end cap with seal-off
tube was fused into position with three-quarters of the ampoule immersed in
cold water. The seal-off tube was then connected to a high vacuum system, |
the ampoule was out-gased at 200°C for 18 to 24 hours and sealed off under a
_pressure of 10‘7 torr. Anchoring of the crystals near the ampoules was
achieved by locally heatiﬁg a small area of the ampoules near the designated
cold end: InSb melted locally and the softened quartz wall deformed, (because
of the reduced pressure in the sealed ampoule), anchoring the crystal into a
fixed position. Figure 1A shows the individual parts of the growth assembly

(as used for ground-based testing) prior to and after encaPSulétion.
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Figure 1A Crystal growth assembly (see text).



APPENDIX B

GROUND-BASED TESTING

The objecéives of pre-flight testing were: (a) the optimization of
characterization procedures for the study of compositional inhomogeneities
on the microscale; (b) the analysis of growth and segregation behavior in
confined configuration brought abdut by controlled power reduction (under
stabilizing and destabilizing thermal gradients) and (c) the determination

of the performance characteristics of the multipurpose furnace.

(a) Characterization Procedures for Compositional Inhomogeneities on
the Microscale:

Extensive investigation of the resolution limits of available charac-
terization techniques indicated the superiority of high resolution etching
over glectrical and mass spectrographic techniques for the detection and
determination of compositional fluctuations on the microscale. The spaﬁial~
resolution of the permanganate etchant (A.F. Witt, J. Electrochem Soc. 114,
298 (1967)) was significantly improved by eliminating unidirectional mechanical
polishing of the InSb specimens and adopting a chemical-mechanical polisning
procedure based on Syton. Optimum results were obtained by polishing the samples.
for 30 to 45 winutes on Corfam wheels with a Sytonm solution containing acetic
acid (to obtain a pH of 7) and H202 (15 cm3/11tre of Syton}. The etching
procedure adOpfed is discussed in the section "Bulk Characterization'.

The suitability of ilon microprobe analysis for the quantitativé'deter—
mination of Te segregation effects on a microscale was studied using a
direct imaging ion microscope (Cameca) and an ion microprobe mass analyzer
(Applied Research Labs). Both techniques proved of limited value because of
the extremely low yield of tellurium fonization during sputtering. The secondary
Te-ion intensity was ratioed to the secondary ion intenéity of the InSb matrix,

a procedure which in principle should permit a reliable quantitative analysis
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at the dopant concentration levels used (about 1018

cm-a); however, the‘
precision of the measurements could not be improved beyond * 167. The reduced
data {concentration Teatoms/cm3) of a longitudinal scan performed in the
regrown segment (adjacent to the original regrowth interface) of the Skylab-III
crystal are shown in Fig. 1B. The observed fluctuation of the measurement
points is due to statistical variations and does not reflect actuwal fluctua-
tions of Te concentration in the InSb matrix. The data indicate that ion
microprobe scanning does not have sufficient sensitivity for the quantitative
determination of microsegregation in Te-doped InSb.

In view of the limitations of the ion microprobe technique, the quantitative
bulk segregation analysis was based on Hall effect measurements carried out in
van der Pauw configuration. Hall effect samples (Zmm x 2mm x 0.5mm} were cut
from the crystals as indicated in the section Quantitative Dopant Segregation
Analysis. To achieve ohmic contacts, gquadrant-shaped silver films were
evaporated at the four corners of each sarnle and the samples subsequently
annealed for two hours at 350°C. Gold lead wires were soldered with indium
onto the silver coated corners. The Hall effect measurements were performed
in a 6" field-regulated electromagnet employing a constant current source and
a calibrated, high impedance microvolt meter. To ensure a measurement precision
of better than 1%, more than thirty individual Hall effect measurements (at
different field strengths) were carried out on each sample. Measurements were
made at 77°K and 300°K; as expected for high doping levels, it was found that
the two sets of data were essentially the sawme.

In addition to the Te-doped crystal, the undoped crystal (grown in
Skylab-~TII) was subjected to quantitative segregation analysis. The Hall

effect data for this crystal are shown in Fig. 2B. Here, also, the steady state
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segregation In space-grown crystal is achieved (after a transient région of
2.5 cm) whereas no steady state segregation is observed in the earth-grown
crystal. The high carrier concentration in Skylab-IIT undoped crystal is

apparently due to inadvertent contamination during processing on earth.

(b) Analysis of Growth and Segregation by Controlled Power Reduction in
Confined Configuration: ;

Extensive experiments were conducted to establish the gfowth and
segregation characteristics for InSb under stabllizing and destabilizing
conditions in a vertical arrangement with a geometric configuration similar
to that designed for the multipurpose furnace (see Fig. 3B). Growth ;xperi—
ments performed under destabilizing thermal gradients permitted for the first
time the establishment of cause andreffect relationships between thermal con-
vection effects in the melt and the formation of segregation inhomogeneitieé
in the growing crystal (K.M. Kim, A.F. Witt and H.C. Gatos, J. Electrochem.
-Soc. 119, 1218 (1972)). It was further shown that with decféasing melt height
the growth system is successively subject to turbulent £ﬁermal coavecfinn,
oscillatory thermal instability and thermal stability. From these experiments
it was determined that under turbulent convection the actual microscopic growth
rate (because of extensive backmelting) is by a factorof up to 20 larger than
the average macroscopic growth rate énd that dopaﬁt segregation is continu-
ously subject to transient conditions to which the Burton, Prim and Slichter
relationship (J.A. Burton, R.C. Prim and W.P. Slichter, J. Chem. Phys. 21,

1987 (1953}) cannot be applied. Growth experiments performed under stabilizing
thermal gradients {growth in the upward direction) revealed the virtual

abgence of segregation inhomogeneities in the bulk of the grown crystals.
In‘all instances, however, the single crystal matrix became polycrystalline

sopti after initlation of growth. The external morphology of the cryscals
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showed randomly distributed cavities due to out-gasing at the melting
temperature of InSb. The regrown crystals exhibited a shiny surface,l
reflecting wetting conditions between the melt and the confining quartz

ampoule,

{c) Ground-Based Tests in the Prototype of the Multipurpose Furnace:

A series of experiments were conduced in the "SIM" and prototype
multipurpose furnaces to establish the required design parameters. In pre-
liminary experiments carried out under stabilizing thermal gradients it was
observed that volume redistribution of the regrown crystals resulted in
fracture of the guartz ampoule. This failure led to the final design of
the "hot-end" graphite spacer.

The thermal characteristics required to achieve in the multipurpose
furnace an average growth of 5 um/se¢ under a temperature gradient of about
20°C/cm was determined by Westinghéuse on the basis of heat transfer calcu-
lations aided by temperature measurements in the "SIM" and prototype furnaces.
Calculations and temperature measurements indicated a constant thermal gradient,
the magnitude of which along the melt zone is a function of heat input. Tempera-
ture measurements during actual regrowth experiments showed that the thermal
gradient in the melt (Fig. 4B) decreases with continuing cool-down (growth).

The theorétically predicted growth rate curves, for cooling rates of 0.6°C/min
and 1.2°C/min are shown in Fig. 5B. The data indicate a steady increase in
growth rate with averapge values of about 5,5 um/sec and 3.0 um/sec for cooling
rates of 1.2 and 0.6°C/min, respectively (for a four-hour cogl-down period).

To verify the actual growth rate in the multipurpose furnace a cartridge

assembly was modified to permit interface demarcation during growth (M. Lichten-

steiger, A,F. Witr and H.C., Gatos, J. Electrochem. Soc. 118, 1013 (1971)) under
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.stabilizing thermal gradients by transmitting during regrowth. current pulses
(18A) of 50 msec duratiom at intervals of 2 seconds across the growth inter-

~ face. The analysis was carried out by cutting the regrown crystal along the
regrowth axis, polishing the exposed (211) plane and etchingfit. The micro~
scopic growth rate data were obtained by measuring under the microscope the
spacings of consecutive demarcation lines. Fig. 6B shows the measured
microscopic growth: rate behavior associated with a cool-down rate of 1.17°C/min.
The measurements indicate a significant discrepancy with the theoretical growth
rate curve: while the average growth rate is in good agreement with that pre-
dicted, the actual microscopic'growth rate assumes a constant value over
about 60% of the regrown region. This particular behavior is attributed to
the presence of slow laminar convective flow established in the melt as a
consequence of unavoidable, radial thermal gradients which are destabilizing
in the presence of gravitational forces; convection in turn tends to reduce
existing thermal gradients and thus is a s! 19ilizing influence on the pre-
vailing microscopic growth rate. The experimental growth rate data confirm
in principle the theoretically predicted growth behavior, since it must be
gssumed that destabilizing conditions are not encountered undér zero gravity

1

conditions in space.

The experimental results indicate clearly that it is wvirtually impossible
to achieve on earth homogenecus, steady state segregation since unavoidable
radial thermal gradients result in thermal convection which prevents the.

effective segregation coefficient from reaching unity.
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APPENDIX C

SUPPLEMENTARY INFORMATION

The salient findings in the InSb growth Skylab experiments and the
significant conclusions drawn from these findings are discussed in the bulk’
of the report. Relevant details pertaining to experimental techniqueé, pro-
cedures and materials are presented iﬁ the preceding abpendices.

This appendix contains miscellaneous observations which are either in
themselves of interest or reflect phenomena and effects which could not be
pursued further in the context of the present experiment. They are included
here in the interest of maintaining the coherence of the bulk of the report.

Figure 1C is a radiograph of the.three Skylab~I11I crystals through the
gteel cartridges after return to Marshall Space Flight Center; regrowth in
gpace took place downwards; the undoped crystal is to the right, the Te-doped
is at the center, and the Sn-doped at the left.

| The same crystals (as in Figure 1C) photographed through the quartz
ampoules are shown in Figﬁre 2C (1.5X); the regrowth interface is at the left-
hand‘si&e of each crystal; the heavily Sn-doped crystél is at thelbotfom,rthe
Te~-doped is in the middle and the undoped crystal is at the top 6f the
figure.

Figure 3C (2X) shows the three cfyétals grown in Skylab-IV, the arrange-
ment of these crystals is as in Figure 2C.

The Sn-doped crystal grown in Skflab-III is shown in Figure 4C (2X) Before
removing it from the ampoule (regrowth intefface toward bottom of figu;e); note
'8n phase along the crystal (bright spots) and Sn extrusion into the cavity of _

_ the hot-end graphite spacer; the original erystal was intentionally heavily
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doped to attain constitutional supercooling (interface breakdown) during
regrowth in space,

Figure 5C (3X) shows the hot-end of the ampoule containing the Te-doped
crystal grown in Skylab-IV; the polycrystalline material extruded into the
;avity of the graphite spacer during the final stages of soiidification is
clearly shown in this figure.

Figure 6C (.9X) shows a Sn~doped crystal removed from its ampoule by
cutting"the ampoule longitudinally after ground-based testing; because of
wetting, detaching of the erystal from the quartz was not feagible without
damaging the crystal, accordingly, this method of removing the crystals from
the ampoules was abandoned; all Skylab-grown crystals were removed by dissolving
the ampoules in 48% HF.

Figure 7C (8.5X) shows the end (solidified in contact with the graphite
spacer} of the undoped crystal groﬁn in Skylab-1II; the oval shape of this end
reflects the radial thermal asymmetry prevailing during.qrystal growth; this
type of asymmetry was observed on all erysials grown in space (this asymmetry
could not be observed in the cases where extrusion tock place into the cavity
of the hot-end spacer}.

Ridges and patterns observed on the as-grown surface of the Te-doped
erystal (Skylab-IV) are shown in Figure 8C (150%).

A ridge configuration towards the end of the Te-doped crystal grown in
Skylab~I11I is shown in Figure 9C (200X); note that the ridges have become
flat and are of relatively uniform height (approximately 25 um).

The surface morphology, between ridges, of the Te-doped crystal (Skylab-
- IIT) is seen in Figure 10C (200X). The patterns seen on the surface do not

propagate into the bulk of the crystal as seen in Figure 11C (200X} where a
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polished and etched cross-section of the crystal 1s shown (light portion of
figure).

Figure 12C {10X) is a double beam interferogram of an etched cross-section
of the crystal grown in Skylab-III; the space-grown segment is on the left-hand
side and the seed on the right-hand side of the figure; note that in the earth=~
grown segment the compositional inhomogeneities are revealed as deflections
of the fringes; no such deflections are seen in the space-grown segment; the
abrupt fringe deflection at the regrowth interface indicates the segregation
transient during the initial stages of regrowth; subsequently the space-grown
segment exhibits compositional homogeneity on a macroscale.

Pronounéed peripheral faceting in the regrowth segment of a ground-based
experiment (Te-doped crystal) is shown in Figure 13C (450X); growth took place
from right to left.

Figure 14¢ (SX).shows cross—sections of the undoped crystal grown in
Skylab-III; the increase in dislocation deﬁ=ity and peripheral twinning
1s seen as regrowtﬁ advances; (a) seed section about 0.2 cm from the regrowth
interface; (b) space-grown section approximately 1.8 cm beyond regrowth interfacé;_
" {c) section approximatély 3.8 cm beyond interface; (d) section approximately
5.6 cm beyond interface.,

In Figure 15C (125X) two photomicrographs (under dark field illumination)
of the peripheral areas éf a cross-section of the undopéd crystal grown in
Skylab~III are shown; the two sections include‘the interface between the seed
~and the space-grown érystal where the melt contacted the quartz wall of the
ampoule; the dislocation patterns reflect the strain induced by the constraint

of the wall upon solidification (InSb expands approximately 13% upon freezing).
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Both types of dislocations (alpha and beta) expected to be present in
inSb are seen on a cross-section of the Te-doped crystal grown in Skylab-IV

ghown in Figure 16C (200X); large pits correspond to beta dislocations.
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