224 research outputs found

    Drag cancellation by added-mass pumping

    Full text link
    A submerged body subject to a sudden shape-change experiences large forces due to the variation of added-mass energy. While this phenomenon has been studied for single actuation events, application to sustained propulsion requires studying \textit{periodic} shape-change. We do so in this work by investigating a spring-mass oscillator submerged in quiescent fluid subject to periodic changes in its volume. We develop an analytical model to investigate the relationship between added-mass variation and viscous damping and demonstrate its range of application with fully coupled fluid-solid Navier-Stokes simulations at large Stokes number. Our results demonstrate that the recovery of added-mass kinetic energy can be used to completely cancel the viscous damping of the fluid, driving the onset of sustained oscillations with amplitudes as large as four times the average body radius r0r_0. A quasi-linear relationship is found to link the terminal amplitude of the oscillations XX, to the extent of size change aa, with X/aX/a peaking at values from 4 to 4.75 depending on the details of the shape-change kinematics. In addition, it is found that pumping in the frequency range of 1a2r0<ω2/ωn2<1+a2r01-\frac{a}{2r_0}<\omega^2/\omega_n^2<1+\frac{a}{2r_0} is required for sustained oscillations. The results of this analysis shed light on the role of added-mass recovery in the context of shape-changing bodies and biologically-inspired underwater vehicles.Comment: 10 pages, 6 Figures, under review in JFM Rapid

    A phantom force induced by the tunneling current, characterized on Si(111)

    Get PDF
    Simultaneous measurements of tunneling currents and atomic forces on surfaces and adsorbates provide new insights into the electronic and structural properties of matter on the atomic scale. We report on experimental observations and calculations of a strong impact the tunneling current can have on the measured force, which arises when the resistivity of the sample cannot be neglected. We present a study on Si(111)-7\times7 with various doping levels, but this effect is expected to occur on other low-conductance samples like adsorbed molecules, and is likely to strongly affect Kelvin probe measurements on the atomic scale.Comment: 4 pages, 4 figures, submitte

    Serum PCB levels and congener profiles among US construction workers

    Full text link
    Abstract Background The presence of PCB in caulking (sealant) material found in masonry buildings has been well-documented in several countries. A recent investigation of 24 buildings in the greater Boston area found that 8 buildings had high PCB levels in caulking materials used around window frames and in joints between masonry blocks. Workers removing caulking material have been shown to have elevated serum PCB levels. Methods This project compared serum PCB levels among male workers who installed and/or removed PCB-containing caulking material from buildings in the greater Boston area with reference serum PCB levels from 358 men from the same area. Serum PCB levels were measured in the same laboratory by liquid-liquid extraction, column chromatography clean-up and dual capillary column GC/microECD analysis. Results When the congener profiles were compared between the reference population and the construction workers, the serum levels of the more volatile, lighter PCBs (di-, tri-and tetrachloro, sum of IUPAC# 6–74) were substantially higher among the construction workers. One of the youngest workers had the lowest total serum PCB levels (sum of 57 congeners) of all 6 workers, but the contribution of more volatile (less chlorinated) PCB congeners (#16, 26,28,33,74,66, and 60) was markedly higher than in other 5 workers and reference men. Only this worker was working on a job that involved removing PCB caulking at the time of the blood sampling. Conclusion While the results of this pilot study are based upon small numbers (6 construction workers who handled PCB caulking), the serum PCB levels among the construction workers exceed the referents. Comparison of the congener profiles suggests that there are substantial differences between the construction workers and the general population samples. These differences, and the similarities of profiles among the construction workers strongly suggest that occupational contact with caulking material can be a major source of PCB exposure for construction workers.http://deepblue.lib.umich.edu/bitstream/2027.42/117256/1/12940_2007_Article_124.pd

    Soil Contamination from PCB-Containing Buildings

    Get PDF
    BACKGROUND: Polychlorinated biphenyls (PCBs) in construction materials, such as caulking used around windows and expansion joints, may constitute a source of PCB contamination in the building interiors and in surrounding soil. Several studies of soil contamination have been conducted around buildings where the caulking has been removed by grinding or scraping. The PCBs in soil may have been generated in the process of removing the caulking, but natural weathering and deterioration of the caulking may have also been a source. OBJECTIVES: The objectives of this study were to measure PCB levels in soil surrounding buildings where PCB-containing caulk was still in place, and to evaluate the mobility of the PCBs from caulking using the Toxicity Characteristic Leaching Procedure (U.S. Environmental Protection Agency Method 1311). DISCUSSION: We found soil PCB contamination ranging from 3.3 to 34 mg/kg around buildings with undisturbed caulking that contained 10,000–36,200 mg/kg PCBs. The results of the Toxicity Characteristic Leaching Procedure (leachate concentrations of 76–288 mg PCB/L) suggest that PCBs in caulking can be mobilized, apparently as complexes with dissolved organic matter that also leach off the caulking material. CONCLUSIONS AND RECOMMENDATIONS: Although these new findings are based on a small sample size, they demonstrate the need for a national survey of PCBs in building materials and in soil surrounding these buildings. Because the buildings constructed during the time the PCB caulking was in use (1960s and 1970s) include schools, hospitals, and apartment buildings, the potential for exposure of children is a particular concern. It is necessary to reconsider the practice of disposing of old PCB caulking removed during building renovations in conventional landfills, given the apparent mobility of PCBs from the caulking material. Disposal of some caulking material in nonhazardous landfills might lead to high PCB levels in landfill leachate

    6-De­oxy-6-fluoro-d-galactose

    Get PDF
    The crystal structure unequivocally confirms the relative stereochemistry of the title compound, C6H11FO5. The absolute stereochemistry was determined by the use of d-galactose as the starting material. The compound exists as a three-dimensional O—H⋯O hydrogen-bonded network with each mol­ecule acting as a donor and acceptor for four hydrogen bonds

    An Unrecognized Source of PCB Contamination in Schools and Other Buildings

    Get PDF
    An investigation of 24 buildings in the Greater Boston Area revealed that one-third (8 of 24) contained caulking materials with polychlorinated biphenyl (PCB) content exceeding 50 ppm by weight, which is the U.S. Environmental Protection Agency (U.S. EPA) specified limit above which this material is considered to be PCB bulk product waste. These buildings included schools and other public buildings. In a university building where similar levels of PCB were found in caulking material, PCB levels in indoor air ranged from 111 to 393 ng/m(3); and in dust taken from the building ventilation system, < 1 ppm to 81 ppm. In this building, the U.S. EPA mandated requirements for the removal and disposal of the PCB bulk product waste as well as for confirmatory sampling to ensure that the interior and exterior of the building were decontaminated. Although U.S. EPA regulations under the Toxic Substances Control Act stipulate procedures by which PCB-contaminated materials must be handled and disposed, the regulations apparently do not require that materials such as caulking be tested to determine its PCB content. This limited investigation strongly suggests that were this testing done, many buildings would be found to contain high levels of PCBs in the building materials and potentially in the building environment. The presence of PCBs in schools is of particular concern given evidence suggesting that PCBs are developmental toxins

    Pauli's Principle in Probe Microscopy

    Get PDF
    Exceptionally clear images of intramolecular structure can be attained in dynamic force microscopy through the combination of a passivated tip apex and operation in what has become known as the "Pauli exclusion regime" of the tip-sample interaction. We discuss, from an experimentalist's perspective, a number of aspects of the exclusion principle which underpin this ability to achieve submolecular resolution. Our particular focus is on the origins, history, and interpretation of Pauli's principle in the context of interatomic and intermolecular interactions.Comment: This is a chapter from "Imaging and Manipulation of Adsorbates using Dynamic Force Microscopy", a book which is part of the "Advances in Atom and Single Molecule Machines" series published by Springer [http://www.springer.com/series/10425]. To be published late 201

    Unique determination of “subatomic” contrast by imaging covalent backbonding

    Get PDF
    The origin of so-called “subatomic” resolution in dynamic force microscopy has remained controversial since its first observation in 2000. A number of detailed experimental and theoretical studies have identified different possible physicochemical mechanisms potentially giving rise to subatomic contrast. In this study, for the first time we are able to assign the origin of a specific instance of subatomic contrast as being due to the back bonding of a surface atom in the tip−sample junction

    New Petro‐aggression in the Middle East: Saudi Arabia in the Spotlight

    Get PDF
    That hydrocarbon abundance may lead to more violence is an established truism in the literature on the resource curse. Looking at the Middle East, however, the literature relates bellicose state behaviour entirely to oil-producing revolutionary republics. Instead, dynastic monarchies are claimed to be the more peacefully behaving actors. Current developments turn this conclusion upside down, however. Since 2015 at the latest, the foreign policy of Saudi Arabia, the leading monarchy in the Middle East, has transformed from multi-dependence to petro-aggression. By discussing this striking transformation, the paper puts forward a framework looking at the interaction of three crucial dimensions: first, the decreasing power projection towards the Middle East by the United States, the decade-long hegemon, due to gradual changes in world energy markets and war fatigue at home; second, the lasting fiscal potency of the Saudi regime; and, third, the personalization of the Saudi monarchy under King Salman as a historically contingent result of transferring power to the generation of Ibn Saud's grandsons
    corecore