5,561 research outputs found

    Towards first-principles understanding of the metal-insulator transition in fluid alkali metals

    Full text link
    By treating the electron-ion interaction as perturbation in the first-principles Hamiltonian, we have calculated the density response functions of a fluid alkali metal to find an interesting charge instability due to anomalous electronic density fluctuations occurring at some finite wave vector {\bi Q} in a dilute fluid phase above the liquid-gas critical point. Since |{\bi Q}| is smaller than the diameter of the Fermi surface, this instability necessarily impedes the electric conduction, implying its close relevance to the metal-insulator transition in fluid alkali metals.Comment: 11 pages, 5 figure

    Superfluid to Mott-insulator transition in Bose-Hubbard models

    Full text link
    We study the superfluid-insulator transition in Bose-Hubbard models in one-, two-, and three-dimensional cubic lattices by means of a recently proposed variational wave function. In one dimension, the variational results agree with the expected Berezinskii-Kosterlitz-Thouless scenario of the interaction-driven Mott transition. In two and three dimensions, we find evidences that, across the transition,most of the spectral weight is concentrated at high energies, suggestive of pre-formed Mott-Hubbard side-bands. This result is compatible with the experimental data by Stoferle et al. [Phys. Rev. Lett. 92, 130403 (2004)].Comment: 4 pages, 4 figures, based on cond-mat/061130

    A Historical Perspective of Catfish Production in the Southeast in Relation to Avian Predation

    Get PDF
    Production of aquaculture species, especially catfish (Ictalurus punctatus) in the Mississippi Delta, is a relatively new and expanding industry. Catfish production represents the largest dollar value of the aquaculture industry, accounting for approximately 50% of the entire industry. Mississippi is responsible for 82% of the total U.S. catfish production. Fish-eating bird populations have capitalized on this new food source. Double-crested cormorants (Phalacrocorax auritus), great blue herons (Ardea herodias), and great egrets (Casmerodius albus) are the primary predators on catfish. Cormorant caused losses in excess of $2 million per year have been reported in Mississippi. U.S. Department of Agriculture research and operational assistance programs have been established in the southeast to determine the economic impact that birds have on the aquaculture industry, and to develop and implement technology that can be used in integrated strategies to solve bird depredation problems

    Doping Dependence of Polaron Hopping Energies in La(1-x)Ca(x)MnO(3) (0<= x<= 0.15)

    Full text link
    Measurements of the low-frequency (f<= 100 kHz) permittivity at T<= 160 K and dc resistivity (T<= 430 K) are reported for La(1-x)Ca(x)MnO(3) (0<= x<= 0.15). Static dielectric constants are determined from the low-T limiting behavior of the permittivity. The estimated polarizability for bound holes ~ 10^{-22} cm^{-3} implies a radius comparable to the interatomic spacing, consistent with the small polaron picture established from prior transport studies near room temperature and above on nearby compositions. Relaxation peaks in the dielectric loss associated with charge-carrier hopping yield activation energies in good agreement with low-T hopping energies determined from variable-range hopping fits of the dc resistivity. The doping dependence of these energies suggests that the orthorhombic, canted antiferromagnetic ground state tends toward an insulator-metal transition that is not realized due to the formation of the ferromagnetic insulating state near Mn(4+) concentration ~ 0.13.Comment: PRB in press, 5 pages, 6 figure

    Quantum-defect theory of resonant charge exchange

    Full text link
    We apply the quantum-defect theory for 1/R4-1/R^4 potential to study the resonant charge exchange process. We show that by taking advantage of the partial-wave-insensitive nature of the formulation, resonant charge exchange of the type of 1^1S+2^2S can be accurately described over a wide range of energies using only three parameters, such as the \textit{gerade} and the \textit{ungerade} ss wave scattering lengths, and the atomic polarizability, even at energies where many partial waves contribute to the cross sections. The parameters can be determined experimentally, without having to rely on accurate potential energy surfaces, of which few exist for ion-atom systems. The theory further relates ultracold interactions to interactions at much higher temperatures.Comment: 8 pages, 7 figure

    Anderson-Hubbard model with box disorder: Statistical dynamical mean-field theory investigation

    Full text link
    Strongly correlated electrons with box disorder in high-dimensional lattices are investigated. We apply the statistical dynamical mean-field theory, which treats local correlations non-perturbatively. The incorporation of a finite lattice connectivity allows for the detection of disorder-induced localization via the probability distribution function of the local density of states. We obtain a complete paramagnetic ground state phase diagram and find correlation-induced as well as disorder-induced metal-insulator transitions. Our results qualitatively confirm predictions obtained by typical medium theory. Moreover, we find that the probability distribution function of the local density of states in the metallic phase strongly deviates from a log-normal distribution as found for the non-interacting case.Comment: 13 pages, 15 figures, published versio

    Electronic transport coefficients from ab initio simulations and application to dense liquid hydrogen

    Full text link
    Using Kubo's linear response theory, we derive expressions for the frequency-dependent electrical conductivity (Kubo-Greenwood formula), thermopower, and thermal conductivity in a strongly correlated electron system. These are evaluated within ab initio molecular dynamics simulations in order to study the thermoelectric transport coefficients in dense liquid hydrogen, especially near the nonmetal-to-metal transition region. We also observe significant deviations from the widely used Wiedemann-Franz law which is strictly valid only for degenerate systems and give an estimate for its valid scope of application towards lower densities

    Theory for Gossamer and Resonating Valence Bond Superconductivity

    Get PDF
    We use an effective Hamiltonian for two-dimensional Hubbard model including an antiferromagnetic spin-spin coupling term to study recently proposed gossamer superconductivity. We formulate a renormalized mean field theory to approximately take into account the strong correlation effect in the partially projected Gutzwiller wavefucntions. At the half filled, there is a first order phase transition to separate a Mott insulator at large Coulomb repulsion U from a gossamer superconductor at small U. Away from the half filled,the Mott insulator is evolved into an resonating valence bond state, which is adiabatically connected to the gossamer superconductor.Comment: 10 pages, 13 figure

    Analytical calculation of the Green's function and Drude weight for a correlated fermion-boson system

    Full text link
    In classical Drude theory the conductivity is determined by the mass of the propagating particles and the mean free path between two scattering events. For a quantum particle this simple picture of diffusive transport loses relevance if strong correlations dominate the particle motion. We study a situation where the propagation of a fermionic particle is possible only through creation and annihilation of local bosonic excitations. This correlated quantum transport process is outside the Drude picture, since one cannot distinguish between free propagation and intermittent scattering. The characterization of transport is possible using the Drude weight obtained from the f-sum rule, although its interpretation in terms of free mass and mean free path breaks down. For the situation studied we calculate the Green's function and Drude weight using a Green's functions expansion technique, and discuss their physical meaning.Comment: final version, minor correction

    Model solution for volume reflection of relativistic particles in a bent crystal

    Full text link
    For volume reflection process in a bent crystal, exact analytic expressions for positively- and negatively-charged particle trajectories are obtained within a model of parabolic continuous potential in each interplanar interval, with the neglect of incoherent multiple scattering. In the limit of the crystal bending radius greatly exceeding the critical value, asymptotic formulas are obtained for the particle mean deflection angle in units of Lindhard's critical angle, and for the final beam profile. Volume reflection of negatively charged particles is shown to contain effects of rainbow scattering and orbiting, whereas with positively charged particles none of these effects arise within the given model. The model predictions are compared with experimental results and numerical simulations. Estimates of the volume reflection mean angle and the final beam profile robustness under multiple scattering are performed.Comment: 21 pages, 11 figure
    corecore