241 research outputs found

    Lagrangian pathways of upwelling in the Southern Ocean

    Get PDF
    The spatial and temporal variability of upwelling into the mixed layer in the Southern Ocean is studied using a 1/10° ocean general circulation model. Virtual drifters are released in a regularly-spaced pattern across the Southern Ocean at depths of 250, 500, and 1000 m during both summer and winter months. The drifters are advected along isopycnals for a period of four years, unless they outcrop into the mixed layer, where lateral advection and a parameterization of vertical mixing is applied. The focus of this study is on the discrete exchange between the model mixed layer and the interior. Localization of interior-mixed layer exchange occurs downstream of major topographic features across the Indian and Pacific basins, creating “hotspots” of outcropping. Minimal outcropping occurs in the Atlantic basin, while 59% of drifters outcrop in the Pacific sector and in Drake Passage (the region from 140° W to 40° W), a disproportionately large amount even when considering the relative basin sizes. Due to spatial and temporal variations in mixed layer depth, the Lagrangian trajectories provide a statistical measure of mixed layer residence times. For each exchange into the mixed layer, the residence time has a Rayleigh distribution with a mean of 30 days; the cumulative residence time of the drifters is 261 ± 194 days, over a period of four years. These results suggest that certain oceanic gas concentrations, such as CO_2 and ^(14)C, will likely not reach equilibrium with the atmosphere before being re-subducted

    Citalopram amplifies the influence of living conditions on mood in depressed patients enrolled in the STAR*D study

    Full text link
    Selective serotonin reuptake inhibitors (SSRIs), the most commonly prescribed antidepressant drugs, have a variable and incomplete efficacy. In order to better understand SSRI action, we explored the hypothesis that SSRIs do not affect mood per se but amplify the influence of the living conditions on mood. To this aim, we exploited the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) data set, selected a subpopulation of 591 patients with an overlapping clinical history and analyzed treatment outcome according to dosage −20 or 40 mg per day of citalopram. We found that sociodemographic characteristics affected treatment response in the same direction in the two dose groups, but these effects reached statistical significance only in the 40 mg per day dose group. In the latter, higher improvement rate was associated with having a working employment status (P=0.0219), longer education (P=0.0053), high income (P=0.01) or a private insurance (P=0.0031), and the higher remission rate was associated with having a working employment status (P=0.0326) or longer education (P=0.0484). Moreover, the magnitude of the effect of the sociodemographic characteristics on mood, measured as the percent of patients showing a positive outcome when exposed to favorable living conditions, was much greater—up to 37-fold—in the 40 compared to the 20 mg per day dose group. Overall, our results indicate that citalopram amplifies the influence of the living conditions on mood in a dose-dependent manner. These findings provide a potential explanation for the variable efficacy of SSRIs and might lead to the development of personalized strategies aimed at enhancing their efficacy

    Lagrangian pathways of upwelling in the Southern Ocean

    Get PDF
    The spatial and temporal variability of upwelling into the mixed layer in the Southern Ocean is studied using a 1/10° ocean general circulation model. Virtual drifters are released in a regularly-spaced pattern across the Southern Ocean at depths of 250, 500, and 1000 m during both summer and winter months. The drifters are advected along isopycnals for a period of four years, unless they outcrop into the mixed layer, where lateral advection and a parameterization of vertical mixing is applied. The focus of this study is on the discrete exchange between the model mixed layer and the interior. Localization of interior-mixed layer exchange occurs downstream of major topographic features across the Indian and Pacific basins, creating “hotspots” of outcropping. Minimal outcropping occurs in the Atlantic basin, while 59% of drifters outcrop in the Pacific sector and in Drake Passage (the region from 140° W to 40° W), a disproportionately large amount even when considering the relative basin sizes. Due to spatial and temporal variations in mixed layer depth, the Lagrangian trajectories provide a statistical measure of mixed layer residence times. For each exchange into the mixed layer, the residence time has a Rayleigh distribution with a mean of 30 days; the cumulative residence time of the drifters is 261 ± 194 days, over a period of four years. These results suggest that certain oceanic gas concentrations, such as CO_2 and ^(14)C, will likely not reach equilibrium with the atmosphere before being re-subducted

    Abrupt Transitions in Submesoscale Structure in Southern Drake Passage: Glider Observations and Model Results

    Get PDF
    Enhanced vertical velocities associated with submesoscale motions may rapidly modify mixed layer depths and increase exchange between the mixed layer and the ocean interior. These dynamics are of particular importance in the Southern Ocean, where the ventilation of many density classes occurs. Here we present results from an observational field program in southern Drake Passage, a region preconditioned for submesoscale instability owing to its strong mesoscale eddy field, persistent fronts, strong down-front winds, and weak vertical stratification. Two gliders sampled from December 2014 through March 2015 upstream and downstream of the Shackleton Fracture Zone (SFZ). The acquired time series of mixed layer depths and buoyancy gradients enabled calculations of potential vorticity and classifications of submesoscale instabilities. The regions flanking the SFZ displayed remarkably different characteristics despite similar surface forcing. Mixed layer depths were nearly twice as deep, and horizontal buoyancy gradients were larger downstream of the SFZ. Upstream of the SFZ, submesoscale variability was confined to the edges of topographically steered fronts, whereas downstream these motions were more broadly distributed. Comparisons to a one-dimensional (1D) mixing model demonstrate the role of submesoscale instabilities in generating mixed layer variance. Numerical output from a submesoscale-resolving simulation indicates that submesoscale instabilities are crucial for correctly reproducing upper-ocean stratification. These results show that bathymetry can play a key role in generating dynamically distinct submesoscale characteristics over short spatial scales and that submesoscale motions can be locally active during summer months

    Comparative analysis of paracrine immunotherapy in experimental brain tumors

    Get PDF
    Local delivery of cytokines has been shown to have a potent antitumor activity against a wide range of malignant brain tumors. In this study, the authors examined the efficacy of treating central nervous system (CNS) tumors by transfecting poorly immunogenic B16/F10 melanoma cells with interleukin (IL)-2, IL-4, or granulocytemacrophage-colony stimulating factor (GM-CSF) gene, and using these cells to deliver the cytokine locally at the site of the CNS tumor. The object was to determine which cytokine would possess the greatest antitumor activity and to further elucidate its mechanism of action. METHODS: The transfected B16/F10 cells were irradiated to prevent replication and injected intracranially into C57BL/6 mice (10 mice per group) along with nonirradiated, nontransfected B16/F10 (wild-type) melanoma cells. Sixty percent of mice treated with IL-2 (p 120 days). The median survival for animals treated with GM-CSF was 22 days with no long term survivors (p = 0.01 compared with control). Control animals that received only wild-type cells had a median survival of 18 days (range 15-20 days). Histopathological examination of brains from animals killed at different times showed minimal infiltration of tumor cells in the IL-2 group, moderate infiltration of tumor cells in the IL-4 group, and gross tumor invasion and tissue necrosis in the GM-CSF group. Animals treated with IL-2 showed a strong CD8 T cell-mediated response, whereas IL-4 evoked a prominent eosinophilic infiltrate in the area of the tumor. CONCLUSIONS: High levels of locally expressed IL-2 rather than IL-4 or GM-CSF stimulate a strong immunological cytotoxic antitumor response that leads to significant prolongation of survival in mice challenged with B16/F10 intracranial melanoma tumor cells. Consequently, IL-2 may be a superior candidate for use in paracrine immunotherapy

    Euclid preparation -XIX. Impact of magnification on photometric galaxy clustering

    Full text link
    Aims. We investigate the importance of lensing magnification for estimates of galaxy clustering and its cross-correlation with shear for the photometric sample of Euclid. Using updated specifications, we study the impact of lensing magnification on the constraints and the shift in the estimation of the best fitting cosmological parameters that we expect if this effect is neglected. Methods. We follow the prescriptions of the official Euclid Fisher matrix forecast for the photometric galaxy clustering analysis and the combination of photometric clustering and cosmic shear. The slope of the luminosity function (local count slope), which regulates the amplitude of the lensing magnification, and the galaxy bias have been estimated from the Euclid Flagship simulation. Results. We find that magnification significantly affects both the best-fit estimation of cosmological parameters and the constraints in the galaxy clustering analysis of the photometric sample. In particular, including magnification in the analysis reduces the 1σ errors on Ωm, 0, w0, wa at the level of 20–35%, depending on how well we will be able to independently measure the local count slope. In addition, we find that neglecting magnification in the clustering analysis leads to shifts of up to 1.6σ in the best-fit parameters. In the joint analysis of galaxy clustering, cosmic shear, and galaxy–galaxy lensing, magnification does not improve precision, but it leads to an up to 6σ bias if neglected. Therefore, for all models considered in this work, magnification has to be included in the analysis of galaxy clustering and its cross-correlation with the shear signal (3 × 2pt analysis) for an accurate parameter estimation. Key words: large-scale structure of Universe / cosmological parameters / cosmology: theor

    Human signatures derived from nighttime lights along the Eastern Alpine river network in Austria and Italy

    Get PDF
    Understanding how human settlements and economic activities are distributed with reference to the geographical location of streams and rivers is of fundamental relevance for several issues, such as flood risk management, drought management related to increased water demands by human population, fluvial ecosystem services, water pollution and water exploitation. Besides the spatial distribution, the evolution in time of the human presence constitutes an additional key question. This work aims at understanding and analysing the spatial and temporal evolution of human settlements and associated economic activity, derived from nighttime lights, in the Eastern Alpine region. Nightlights, available at a fine spatial resolution and for a 22-year period, constitute an excellent data base, which allows one to explore in details human signatures. In this experiment, nightlights are associated to five distinct distance-from-river classes. Our results clearly point out an overall enhancement of human presence across the considered distance classes during the last 22 years, though presenting some differences among the study regions. In particular, the river network delineation, by considering different groups of river pixels based on the Strahler order, is found to play a central role in the identification of nightlight spatio-temporal trends

    Upgraded Pulsating Heat Pipe Only For Space (U-Phos): Results of the 22nd Rexus Sounding Rocket Campaign

    Get PDF
    A large tube may still behave, to a certain extent, as a capillary in a micro-gravity environment. This very basic concept is here applied to a two-phase passive heat transfer devices in order to obtain a new family of hybrid wickless heat pipes. Indeed, a Loop Thermosyphon, which usually consists of a large tube, closed end to end in a loop, evacuated and partially filled with a working fluid and intrinsically gravity assisted, may become a capillary tube in space condition and turn its thermo-fluidic behavior into a so called Pulsating Heat Pipe (PHP), or better, a Space Pulsating Heat Pipe (SPHP). Since the objective of the present work is to experimentally demonstrate the feasibility of such a hybrid device, a SPHP has been designed, built, instrumented and tested both on ground and microgravity conditions on the 22nd ESA REXUS Sounding Rocket Campaign. Ground tests demonstrate that the device effectively work as a gravity assisted loop thermosyphon, whether the sounding rocket data clearly reveal a change in the thermal hydraulic behavior very similar to the PHP. Since a microgravity period of approximately 120s is not sufficient to reach a pseudo steady state regime, further investigation on a longer term weightless condition is mandatory

    Evolutionary leap in large-scale flood risk assessment needed

    Get PDF
    Current approaches for assessing large-scale flood risks contravene the fundamental principles of the flood risk system functioning because they largely ignore basic interactions and feedbacks between atmosphere, catchments, river-floodplain systems and socio-economic processes. As a consequence, risk analyses are uncertain and might be biased. However, reliable risk estimates are required for prioritizing national investments in flood risk mitigation or for appraisal and management of insurance portfolios. We review several examples of process interactions and highlight their importance in shaping spatio-temporal risk patterns. We call for a fundamental redesign of the approaches used for large-scale flood risk assessment. They need to be capable to form a basis for large-scale flood risk management and insurance policies worldwide facing the challenge of increasing risks due to climate and global change. In particular, implementation of the European Flood Directive needs to be adjusted for the next round of flood risk mapping and development of flood risk management plans focussing on methods accounting for more process interactions in flood risk systems
    • 

    corecore