520 research outputs found

    Reconstructing the free energy landscape of a polyprotein by single-molecule experiments

    Full text link
    The mechanical unfolding of an engineered protein composed of eight domains of Ig27 is investigated by using atomic force microscopy. Exploiting a fluctuation relation, the equilibrium free energy as a function of the molecule elongation is estimated from pulling experiments. Such a free energy exhibits a regular shape that sets a typical unfolding length at zero force of the order of 20 nm. This length scale turns out to be much larger than the kinetic unfolding length that is also estimated by analyzing the typical rupture force of the molecule under dynamic loading

    In vitro maturation of immature thymocytes into immunocompetent T cells in the absence of direct thymic influence

    Get PDF
    Peanut lectin (PNL) binds to a majority of mouse thymocytes (Thc) in suspension. By using cell affinity chromatography on a column of anti-PNL antibody, Thc populations at least 96 percent pure in PNL + or - cells, as judged by immunofluorescence, were obtained. PNL(+) cells are rich in Thy 1 and poor in H(2) antigens, cortisone sensitive, unresponsive to phytohemagglutinin (PHA), and immunologically incompetent, as judged by mixed lymphocyte reaction, popliteal lymph node graft-versus-host assay, and by testing helper activity in a primary in vitro antibody response to sheep erythrocytes; the converse is true of PNL(-) cells. Thus, PNL(+) and (-) cells appear to correspond to cortical and medullary Thc, respectively, as previously suggested. In culture, PNL(+) Thc show poor viability and a weak proliferative response to concanavalin A (Con A), except when supernate (SUP) of 24 h Con A stimulated lymph node lymphocyte cultures, or irradiated lymph node cells, are added, in which cases a strong proliferative response to the mitogen is observed. A variety of control experiments showed that the proliferating cells did not result from preferential stimulation of a few contaminating PNL(-) Thc present in the PNL(+) Thc cultures. The blasts resulting from PNL(+) Thc proliferation display mitogen-induced cytotoxicity, and give rise to a population of medium-sized lymphocytes, mostly PNL(-), poor in Thy 1 and rich in H(2) antigens, PHA responsive, and immunologically competent in the above-mentioned assays. Fresh PNL(+) Thc responded in mixed lymphocyte reaction in the presence of SUP (lectin depleted) and since incubation in SUP alone did not confer reactivity on PNL(+) Thc, it appears therefore that (a) immature Thc possess alloantigen and mitogen-specific surface receptors but lack the capacity to respond by proliferation to receptor triggering without the help of extracellular factor(s) released by mature lymphoid cells stimulated by mitogens (b) cell division is associated with the acquisition of immunological responsiveness, characteristic of mature T lymphocytes. The implications of these findings for the ontogenesis of thymus-derived lymphocytes, and for the possible traffic of Thc within and from the thymus, are discussed

    Daily reoxygenation decreases myocardial injury and improves post-ischaemic recovery after chronic hypoxia

    Get PDF
    Objective: In contrast to the clinical evidence, experimental studies showed that chronic hypoxia (CH) confers a certain degree of protection against ischaemia-reperfusion damage. We studied the effects of daily reoxygenation during CH (CHReox) on hearts exposed to ischaemia-reperfusion. We also separated the intrinsic effects on the myocardium of CH and CHReox from those related to circulatory and nervous factors. Methods: Fifty-one Sprague-Dawley rats were maintained for 15 days under CH (10% O2) or CHReox (10% O2+1hday−1 exposure to air). Normoxic (N, 21% O2) rats were the control. The animals were randomly assigned to one of the three following protocols: (1) protocol A: hearts (n=7 per group) were subjected to 30-min occlusion of the left anterior descending (LAD) coronary artery followed by 3-h reperfusion, with measurement of the injury by tetrazolium staining; (2) protocol B: the end-diastolic pressure (EDP) and left ventricular developed pressure×heart rate (LVDP×HR) were measured in Langendorff-perfused isolated hearts (n=5 per group) during 30-min global ischaemia and 45-min reperfusion; and (3) protocol C: hearts (n=5 per group) were frozen for the determination of levels of endothelial nitric oxide synthase (eNOS) by Western blotting. Results: CHReox hearts displayed greater phosphorylation of the eNOS and enhanced plasma level of nitrates and nitrites in comparison to CH hearts (P≪0.0001, Bonferroni's post-test). The infarct size was greater in CH than in N hearts (P≪0.0001, Bonferroni's post-test) while it was reduced in CHReox in comparison to CH and N hearts (P≪0.0001). At the end of reperfusion, EDP was higher in CH than CHReox and N hearts (P=0.01, Bonferroni's post-test) while LVDP×HR was higher in CHReox and N than in CH hearts (P=0.03, Bonferroni's post-test). Conclusions: Exposure to CH results in impairment of myocardial tolerance to ischaemia-reperfusion, greater injury and reduced recovery of performance, in agreement with clinical evidence. Infarct size, diastolic contracture and myocardial performance have been reduced, respectively, by 63%, 64% and 151% with daily reoxygenation compared with chronic hypoxia by accelerating intrinsic adaptive change

    Fast wide-volume functional imaging of engineered in vitro brain tissues

    Get PDF
    The need for in vitro models that mimic the human brain to replace animal testing and allow high-throughput screening has driven scientists to develop new tools that reproduce tissue-like features on a chip. Three-dimensional (3D) in vitro cultures are emerging as an unmatched platform that preserves the complexity of cell-to-cell connections within a tissue, improves cell survival, and boosts neuronal differentiation. In this context, new and flexible imaging approaches are required to monitor the functional states of 3D networks. Herein, we propose an experimental model based on 3D neuronal networks in an alginate hydrogel, a tunable wide-volume imaging approach, and an efficient denoising algorithm to resolve, down to single cell resolution, the 3D activity of hundreds of neurons expressing the calcium sensor GCaMP6s. Furthermore, we implemented a 3D co-culture system mimicking the contiguous interfaces of distinct brain tissues such as the cortical-hippocampal interface. The analysis of the network activity of single and layered neuronal co-cultures revealed cell-type-specific activities and an organization of neuronal subpopulations that changed in the two culture configurations. Overall, our experimental platform represents a simple, powerful and cost-effective platform for developing and monitoring living 3D layered brain tissue on chip structures with high resolution and high throughput

    Comparison of clinical and angiographic prognostic risk scores in elderly patients presenting with acute coronary syndrome and referred for percutaneous coronary intervention.

    Get PDF
    BACKGROUND: Multiple risk prediction models have been validated in all-age patients presenting with acute coronary syndrome (ACS) and treated with percutaneous coronary intervention (PCI); however, they have not been validated specifically in the elderly. METHODS: We calculated the GRACE (Global Registry of Acute Coronary Events) score, the logistic EuroSCORE, the AMIS (Acute Myocardial Infarction Swiss registry) score, and the SYNTAX (Synergy between Percutaneous Coronary Intervention with TAXUS and Cardiac Surgery) score in a consecutive series of 114 patients ≥75 years presenting with ACS and treated with PCI within 24 hours of hospital admission. Patients were stratified according to score tertiles and analysed retrospectively by comparing the lower/mid tertiles as an aggregate group with the higher tertile group. The primary endpoint was 30-day mortality. Secondary endpoints were the composite of death and major adverse cardiovascular events (MACE) at 30 days, and 1-year MACE-free survival. Model discrimination ability was assessed using the area under receiver operating characteristic curve (AUC). RESULTS: Thirty-day mortality was higher in the upper tertile compared with the aggregate lower/mid tertiles according to the logistic EuroSCORE (42% vs 5%; odds ratio [OR] = 14, 95% confidence interval [CI] = 4-48; p <0.001; AUC = 0.79), the GRACE score (40% vs 4%; OR = 17, 95% CI = 4-64; p <0.001; AUC = 0.80), the AMIS score (40% vs 4%; OR = 16, 95% CI = 4-63; p <0.001; AUC = 0.80), and the SYNTAX score (37% vs 5%; OR = 11, 95% CI = 3-37; p <0.001; AUC = 0.77). CONCLUSIONS: In elderly patients presenting with ACS and referred to PCI within 24 hours of admission, the GRACE score, the EuroSCORE, the AMIS score, and the SYNTAX score predicted 30 day mortality. The predictive value of clinical scores was improved by using them in combination

    Understanding lactatemia in human sepsis potential impact for early management

    Get PDF
    Rationale: Hyperlactatemia in sepsis may derive from a prevalent impairment of oxygen supply/demand and/or oxygen use. Discriminating between these two mechanisms may be relevant for the early fluid resuscitation strategy. Objectives: To understand the relationship among central venous oxygen saturation (ScvO2), lactate, and base excess to better determine the origin of lactate. Methods: This was a post hoc analysis of baseline variables of 1,741 patients with sepsis enrolled in the multicenter trial ALBIOS (Albumin ItalianOutcome Sepsis). Variableswere analyzed as a function of sextiles of lactate concentration and sextiles of ScvO2.Wedefined the "alactic base excess," as the sum of lactate and standard base excess. Measurements and Main Results: Organ dysfunction severity scores, physiologic variables of hepatic, metabolic, cardiac, and renal function, and 90-day mortality were measured. ScvO2 was lower than 70% only in 35% of patients. Mortality, organ dysfunction scores, and lactate were highest in the first and sixth sextiles of ScvO2. Although lactate level related strongly to mortality, it was associated with acidemia only when kidney function was impaired (creatinine >2 mg/dl), as rapidly detected by a negative alactic base excess. In contrast, positive values of alactic base excess were associated with a relative reduction of fluid balance. Conclusions: Hyperlactatemia is powerfully correlated with severity of sepsis and, in established sepsis, is caused more frequently by impaired tissue oxygen use, rather than by impaired oxygen transport. Concomitant acidemia was only observed in the presence of renal dysfunction, as rapidly detected by alactic base excess. The current strategy of fluid resuscitation could be modified according to the origin of excess lactate

    Brief reoxygenation episodes during chronic hypoxia enhance posthypoxic recovery of LV function: Role of mitogen-activated protein kinase signaling pathways

    Get PDF
    Children with congenital cyanotic heart defects have worse outcomes after surgical repair of their heart defects compared with noncyanotic ones. Institution of extracorporeal circulation in these children exposes the cyanotic heart to reoxygenation injury. Mitogen-activated protein kinase (MAPK) signaling cascades are major regulators of cardiomyocyte function in acute hypoxia and reoxygenation. However, their roles in chronic hypoxia are incompletely understood. We determined myocardial activation of the three major MAPKs, c-Jun NH2-terminal kinase (JNK), extracellular signal-regulated kinase-1/2 (ERK1/2), and p38-MAPK in adult rats exposed to hypoxia (FIO2=0.10) for varying periods of time. Myocardial function was analyzed in isolated perfused hearts. Acute hypoxia stimulated JNK and p38-MAPK activation. Chronic hypoxia (2weeks) was associated with increased p38-MAPK (but not JNK) activation, increased apoptosis, and impaired posthypoxic recovery of LV function. Brief normoxic episodes (1h/day) during chronic hypoxia abolished p38-MAPK activation, stimulated MEK-ERK1/2 activation modestly, and restored posthypoxic LV function. In vivo p38-MAPK inhibition by SB203580 or SB202190 in chronically hypoxic rats restored posthypoxic LV function. These results indicate that sustained hypoxemia maintains p38-MAPK in a chronically activated state that predisposes to myocardial impairment upon reoxygenation. Brief normoxic episodes during chronic hypoxia prevent p38-MAPK activation and restore posthypoxic recovery of myocardial functio

    Molecular codes and in vitro generation of hypocretin and melanin concentrating hormone neurons.

    Get PDF
    Hypocretin/orexin (HCRT) and melanin concentrating hormone (MCH) neuropeptides are exclusively produced by the lateral hypothalamus and play important roles in sleep, metabolism, reward, and motivation. Loss of HCRT (ligands or receptors) causes the sleep disorder narcolepsy with cataplexy in humans and in animal models. How these neuropeptides are produced and involved in diverse functions remain unknown. Here, we developed methods to sort and purify HCRT and MCH neurons from the mouse late embryonic hypothalamus. RNA sequencing revealed key factors of fate determination for HCRT (Peg3, Ahr1, Six6, Nr2f2, and Prrx1) and MCH (Lmx1, Gbx2, and Peg3) neurons. Loss of Peg3 in mice significantly reduces HCRT and MCH cell numbers, while knock-down of a Peg3 ortholog in zebrafish completely abolishes their expression, resulting in a 2-fold increase in sleep amount. We also found that loss of HCRT neurons in Hcrt-ataxin-3 mice results in a specific 50% decrease in another orexigenic neuropeptide, QRFP, that might explain the metabolic syndrome in narcolepsy. The transcriptome results were used to develop protocols for the production of HCRT and MCH neurons from induced pluripotent stem cells and ascorbic acid was found necessary for HCRT and BMP7 for MCH cell differentiation. Our results provide a platform to understand the development and expression of HCRT and MCH and their multiple functions in health and disease
    corecore