1,033 research outputs found

    Jet Energy Density in Hadron-Hadron Collisions at High Energies

    Full text link
    The average particle multiplicity density dN/deta is the dynamical quantity which reflects some regularities of particle production in low-pT range. The quantity is an important ingredient of z-scaling. Experimental results on charged particle density are available for pp, pA and AA collisions while experimental properties of the jet density are still an open question. The goal of this work is to find the variable which will reflect the main features of the jet production in low transverse energy range and play the role of the scale factor for the scaling function psi(z) and variable z in data z-presentation. The appropriate candidate is the variable we called "scaled jet energy density". Scaled jet energy density is the probability to have a jet with defined ET in defined xT and pseudorapidity regions. The PYTHIA6.2 Monte Carlo generator is used for calculation of scaled jet energy density in proton-proton collisions over a high energy range (sqrt s = 200-14000 GeV) and at eta = 0. The properties of the new variable are discussed and sensitivity to "physical scenarios" applied in the standard Monte Carlo generator is noted. The results of scaled jet energy density at LHC energies are presented and compared with predictions based on z-scaling.Comment: 11 pages, LaTeX, 8 figures, Presented at the XVII International Baldin Seminar on High Energy Physics Problems "Relativistic Nuclear Physics & Quantum Chromodynamics", Dubna, Russia, September 27 - October 2, 200

    Chemical surface deposition of CdS thin films from CdI2 aqueous solution

    Get PDF
    For the first time using CdI2 solution CdS films on glass and ITO coated glass substrates were produced by the method of layerwise chemical surface deposition (ChSD). CdS thin films with the widths from 40 nm to 100 nm were obtained for windows in solar cells based on CdS/CdTe heterojunctions. Changes of the structural and optical properties of CdS films due to air annealing are shown. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/910

    Photon Physics in Heavy Ion Collisions at the LHC

    Full text link
    Various pion and photon production mechanisms in high-energy nuclear collisions at RHIC and LHC are discussed. Comparison with RHIC data is done whenever possible. The prospect of using electromagnetic probes to characterize quark-gluon plasma formation is assessed.Comment: Writeup of the working group "Photon Physics" for the CERN Yellow Report on "Hard Probes in Heavy Ion Collisions at the LHC", 134 pages. One figure added in chapter 5 (comparison with PHENIX data). Some figures and correponding text corrected in chapter 6 (off-chemical equilibrium thermal photon rates). Some figures modified in chapter 7 (off-chemical equilibrium photon rates) and comparison with PHENIX data adde

    The Gross--Llewellyn Smith Sum Rule in the Analytic Approach to Perturbative QCD

    Get PDF
    We apply analytic perturbation theory to the Gross--Llewellyn Smith sum rule. We study the Q2Q^2 evolution and the renormalization scheme dependence of the analytic three-loop QCD correction to this sum rule, and demonstrate that the results are practically renormalization scheme independent and lead to rather different Q2Q^2 evolution than the standard perturbative correction possesses.Comment: 17 pages, 9 eps figures, REVTe

    Thomson scattering diagnostics at the Globus M2 tokamak

    Full text link
    The paper is devoted to the Thomson scattering (TS) diagnostics recently developed for the Globus-M2 spherical tokamak and prototyping the ITER divertor TS diagnostics. The distinctive features of the system are the use of spectrometers, acquisition system and lasers that meet the base requirements for ITER TS diagnostics. The paper describes the diagnostic system that allows precise measurements of TS signals, as well as the results of the first measurements of electron temperature and density in both central region of the plasma column and scrape-off layer. The system provides measurements of electron temperature TeT_{e} in the range of 5 eV to 5 keV and density nen_{e} in the range of 51017÷3.251020m35{\cdot}10^{17}{\div}3.25{\cdot}10^{20} m^{-3}. The use of two ITER-grade probing lasers of different wavelengths (Nd:YAG 1064.5 nm and Nd:YLF 1047.3 nm) allows reliable measurement of TeT_{e} in multi-colour mode, i.e., assuming that spectral calibration is unknown

    Azimuthal anisotropy and correlations in the hard scattering regime at RHIC

    Get PDF
    Azimuthal anisotropy (v2v_2) and two-particle angular correlations of high pTp_T charged hadrons have been measured in Au+Au collisions at sNN\sqrt{s_{NN}}=130 GeV for transverse momenta up to 6 GeV/c, where hard processes are expected to contribute significantly. The two-particle angular correlations exhibit elliptic flow and a structure suggestive of fragmentation of high pTp_T partons. The monotonic rise of v2(pT)v_2(p_T) for pT<2p_T<2 GeV/c is consistent with collective hydrodynamical flow calculations. At \pT>3 GeV/c a saturation of v2v_2 is observed which persists up to pT=6p_T=6 GeV/c.Comment: As publishe

    Azimuthal anisotropy of K0S and Lambda + Lambda -bar production at midrapidity from Au+Au collisions at sqrt[sNN]=130 GeV

    Get PDF
    We report STAR results on the azimuthal anisotropy parameter v2 for strange particles K0S, Lambda , and Lambda -bar at midrapidity in Au+Au collisions at sqrt[sNN]=130 GeV at the Relativistic Heavy Ion Collider. The value of v2 as a function of transverse momentum, pt, of the produced particle and collision centrality is presented for both particles up to pt~3.0 GeV/c. A strong pt dependence in v2 is observed up to 2.0 GeV/c. The v2 measurement is compared with hydrodynamic model calculations. The physics implications of the pt integrated v2 magnitude as a function of particle mass are also discussed.Alle Autoren: C. Adler, Z. Ahammed, C. Allgower, J. Amonett, B. D. Anderson, M. Anderson, G. S. Averichev, J. Balewski, O. Barannikova, L. S. Barnby, J. Baudot, S. Bekele, V. V. Belaga, R. Bellwied, J. Berger, H. Bichsel, A. Billmeier, L. C. Bland, C. O. Blyth, B. E. Bonner, A. Boucham, A. Brandin, A. Bravar, R. V. Cadman, H. Caines, M. Calderón de la Barca Sánchez, A. Cardenas, J. Carroll, J. Castillo, M. Castro, D. Cebra, P. Chaloupka, S. Chattopadhyay, Y. Chen, S. P. Chernenko, M. Cherney, A. Chikanian, B. Choi, W. Christie, J. P. Coffin, T. M. Cormier, J. G. Cramer, H. J. Crawford, W. S. Deng, A. A. Derevschikov, L. Didenko, T. Dietel, J. E. Draper, V. B. Dunin, J. C. Dunlop, V. Eckardt, L. G. Efimov, V. Emelianov, J. Engelage, G. Eppley, B. Erazmus, P. Fachini, V. Faine, K. Filimonov, E. Finch, Y. Fisyak, D. Flierl, K. J. Foley, J. Fu, C. A. Gagliardi, N. Gagunashvili, J. Gans, L. Gaudichet, M. Germain, F. Geurts, V. Ghazikhanian, O. Grachov, V. Grigoriev, M. Guedon, E. Gushin, T. J. Hallman, D. Hardtke, J. W. Harris, T. W. Henry, S. Heppelmann, T. Herston, B. Hippolyte, A. Hirsch, E. Hjort, G. W. Hoffmann, M. Horsley, H. Z. Huang, T. J. Humanic, G. Igo, A. Ishihara, Yu. I. Ivanshin, P. Jacobs, W. W. Jacobs, M. Janik, I. Johnson, P. G. Jones, E. G. Judd, M. Kaneta, M. Kaplan, D. Keane, J. Kiryluk, A. Kisiel, J. Klay, S. R. Klein, A. Klyachko, A. S. Konstantinov, M. Kopytine, L. Kotchenda, A. D. Kovalenko, M. Kramer, P. Kravtsov, K. Krueger, C. Kuhn, A. I. Kulikov, G. J. Kunde, C. L. Kunz, R. Kh. Kutuev, A. A. Kuznetsov, L. Lakehal-Ayat, M. A. C. Lamont, J. M. Landgraf, S. Lange, C. P. Lansdell, B. Lasiuk, F. Laue, A. Lebedev, R. Lednický, V. M. Leontiev, M. J. LeVine, Q. Li, S. J. Lindenbaum, M. A. Lisa, F. Liu, L. Liu, Z. Liu, Q. J. Liu, T. Ljubicic, W. J. Llope, G. LoCurto, H. Long, R. S. Longacre, M. Lopez-Noriega, W. A. Love, T. Ludlam, D. Lynn, J. Ma, R. Majka, S. Margetis, C. Markert, L. Martin, J. Marx, H. S. Matis, Yu. A. Matulenko, T. S. McShane, F. Meissner, Yu. Melnick, A. Meschanin, M. Messer, M. L. Miller, Z. Milosevich, N. G. Minaev, J. Mitchell, V. A. Moiseenko, C. F. Moore, V. Morozov, M. M. de Moura, M. G. Munhoz, J. M. Nelson, P. Nevski, V. A. Nikitin, L. V. Nogach, B. Norman, S. B. Nurushev, G. Odyniec, A. Ogawa, V. Okorokov, M. Oldenburg, D. Olson, G. Paic, S. U. Pandey, Y. Panebratsev, S. Y. Panitkin, A. I. Pavlinov, T. Pawlak, V. Perevoztchikov, W. Peryt, V. A Petrov, M. Planinic, J. Pluta, N. Porile, J. Porter, A. M. Poskanzer, E. Potrebenikova, D. Prindle, C. Pruneau, J. Putschke, G. Rai, G. Rakness, O. Ravel, R. L. Ray, S. V. Razin, D. Reichhold, J. G. Reid, F. Retiere, A. Ridiger, H. G. Ritter, J. B. Roberts, O. V. Rogachevski, J. L. Romero, A. Rose, C. Roy, V. Rykov, I. Sakrejda, S. Salur, J. Sandweiss, A. C. Saulys, I. Savin, J. Schambach, R. P. Scharenberg, N. Schmitz, L. S. Schroeder, A. Schüttauf, K. Schweda, J. Seger, D. Seliverstov, P. Seyboth, E. Shahaliev, K. E. Shestermanov, S. S. Shimanskii, V. S. Shvetcov, G. Skoro, N. Smirnov, R. Snellings, P. Sorensen, J. Sowinski, H. M. Spinka, B. Srivastava, E. J. Stephenson, R. Stock, A. Stolpovsky, M. Strikhanov, B. Stringfellow, C. Struck, A. A. P. Suaide, E. Sugarbaker, C. Suire, M. Šumbera, B. Surrow, T. J. M. Symons, A. Szanto de Toledo, P. Szarwas, A. Tai, J. Takahashi, A. H. Tang, J. H. Thomas, M. Thompson, V. Tikhomirov, M. Tokarev, M. B. Tonjes, T. A. Trainor, S. Trentalange, R. E. Tribble, V. Trofimov, O. Tsai, T. Ullrich, D. G. Underwood, G. Van Buren, A. M. VanderMolen, I. M. Vasilevski, A. N. Vasiliev, S. E. Vigdor, S. A. Voloshin, F. Wang, H. Ward, J. W. Watson, R. Wells, G. D. Westfall, C. Whitten, Jr., H. Wieman, R. Willson, S. W. Wissink, R. Witt, J. Wood, N. Xu, Z. Xu, A. E. Yakutin, E. Yamamoto, J. Yang, P. Yepes, V. I. Yurevich, Y. V. Zanevski, I. Zborovský, H. Zhang, W. M. Zhang, R. Zoulkarneev, and A. N. Zubarev (STAR Collaboration

    Disappearance of back-to-back high pTp_T hadron correlations in central Au+Au collisions at sNN\sqrt{s_{NN}} = 200 GeV

    Full text link
    Azimuthal correlations for large transverse momentum charged hadrons have been measured over a wide pseudo-rapidity range and full azimuth in Au+Au and p+p collisions at sNN\sqrt{s_{NN}} = 200 GeV. The small-angle correlations observed in p+p collisions and at all centralities of Au+Au collisions are characteristic of hard-scattering processes already observed in elementary collisions. A strong back-to-back correlation exists for p+p and peripheral Au + Au. In contrast, the back-to-back correlations are reduced considerably in the most central Au+Au collisions, indicating substantial interaction as the hard-scattered partons or their fragmentation products traverse the medium.Comment: submitted to Phys. Rev. Let

    Azimuthal anisotropy of K0s and Lambda prduction at mid-rapidity from Au+Au collisions at root s = 130 GeV

    Full text link
    We report STAR results on the azimuthal anisotropy parameter v2 for strange particles K0S, L and Lbar at midrapidity in Au+Au collisions at sNN = 130 GeV at RHIC. The value of v2 as a function of transverse momentum of the produced particles pt and collision centrality is presented for both particles up to pt 3.0 GeV/c. A strong pt dependence in v2 is observed up to 2.0 GeV/c. The v2 measurement is compared with hydrodynamic model calculations. The physics implications of the pt integrated v2 magnitude as a function of particle mass are also discussed.Comment: 6 pages, 4 figures, by the STAR collaboratio

    Elliptic flow from two- and four-particle correlations in Au + Au collisions at sqrt{s_{NN}} = 130 GeV

    Get PDF
    Elliptic flow holds much promise for studying the early-time thermalization attained in ultrarelativistic nuclear collisions. Flow measurements also provide a means of distinguishing between hydrodynamic models and calculations which approach the low density (dilute gas) limit. Among the effects that can complicate the interpretation of elliptic flow measurements are azimuthal correlations that are unrelated to the reaction plane (non-flow correlations). Using data for Au + Au collisions at sqrt{s_{NN}} = 130 GeV from the STAR TPC, it is found that four-particle correlation analyses can reliably separate flow and non-flow correlation signals. The latter account for on average about 15% of the observed second-harmonic azimuthal correlation, with the largest relative contribution for the most peripheral and the most central collisions. The results are also corrected for the effect of flow variations within centrality bins. This effect is negligible for all but the most central bin, where the correction to the elliptic flow is about a factor of two. A simple new method for two-particle flow analysis based on scalar products is described. An analysis based on the distribution of the magnitude of the flow vector is also described.Comment: minor text change
    corecore