788 research outputs found

    Semi-Leptonic b-decay at Intermediate Recoil

    Full text link
    We compute the O(\alpha_s^2) corrections to the differential rate of the semileptonic decay b -> clv at the "intermediate recoil" point, where the c-quark mass and the invariant mass of the leptons are equal. The calculation is based on an expansion around two opposite limits of the quark masses m_{b,c}: m_c ~ m_b and m_c << m_b. The former case was previously studied; we correct and extend that result. The latter case is new. The smooth matching of both expansions provides a check of both. We clarify the discrepancy between the recent determinations of the full NNLO QCD correction to the semileptonic b -> c rate, and its earlier estimate.Comment: 9 pages, 6 figures, Replaced figures, small format and typo corrections, added appendix and reference

    Heavy-to-heavy quark decays at NNLO

    Full text link
    Details of a recent calculation of O(alpha_s^2) corrections to the decay b -> c,l,nu_l, taking into account the c-quark mass, are described. Construction of the expansion in the mass ratio m_c/m_b as well as the evaluation of new four-loop master integrals are presented. The same techniques are applicable to the muon decay, mu -> e,nu_mu,anti-nu_e. Analytical results are presented, for the physical cases as well as for a model with purely-vector couplings.Comment: 11 page

    Relativistic Turbulence: A Long Way from Preheating to Equilibrium

    Get PDF
    We study, both numerically and analytically, the development of equilibrium after preheating. We show that the process is characterised by the appearance of Kolmogorov spectra and the evolution towards thermal equilibrium follows self-similar dynamics. Simplified kinetic theory gives values for all characteristic exponents which are close to what is observed in lattice simulations. The resulting time for thermalization is long, and temperature at thermalization is low, T∼100T \sim 100 eV in the simple λΦ4\lambda \Phi^4 inflationary model. Our results allow a straightforward generalization to realistic models.Comment: 4 pages, 3figures, LaTe

    Reheating and thermalization in a simple scalar model

    Get PDF
    We consider a simple model for the Universe reheating, which consists of a single self--interacting scalar field in Minkowskian space--time. Making use of the existence of an additional small parameter proportional to the amplitude of the initial spatially homogeneous field oscillations, we show that the behavior of the field can be found reliably. We describe the evolution of the system from the homogeneous oscillations to the moment when thermalization is completed. We compare our results with the Hartree--Fock approximation and argue that some properties found for this model may be the common features of realistic theories.Comment: Some changes in Introduction and Discussion, comparison with the Hartree--Fock results added. 37 pages, 2 postscript figures attache

    Standard Model Neutrinos as Warm Dark Matter

    Get PDF
    Standard Model neutrinos are not usually considered plausible dark matter candidates because the usual treatment of their decoupling in the early universe implies that their mass must be sufficiently small to make them ``hot'' dark matter. In this paper we show that decoupling of Standard Model neutrinos in low reheat models may result in neutrino densities very much less than usually assumed, and thus their mass may be in the keV range. Standard Model neutrinos may therefore be warm dark matter candidates.Comment: 5 pages, 5 figures, LaTeX file uses revtex packag

    Constrained Simulations of the Magnetic Field in the Local Universe and the Propagation of UHECRs

    Full text link
    We use simulations of LSS formation to study the build-up of magnetic fields (MFs) in the ICM. Our basic assumption is that cosmological MFs grow in a MHD amplification process driven by structure formation out of a seed MF present at high z. Our LCDM initial conditions for the density fluctuations have been statistically constrained by the observed galaxies, based on the IRAS 1.2-Jy all-sky redshift survey. As a result, prominent galaxy clusters in our simulation coincide closely with their real counterparts. We find excellent agreement between RMs of our simulated clusters and observational data. The improved resolution compared to previous work also allows us to study the MF in large-scale filaments, sheets and voids. By tracing the propagation of UHE protons in the simulated MF we construct full-sky maps of expected deflection angles of protons with arrival energies E=1e20eV and 4e19eV, respectively. Strong deflections are only produced if UHE protons cross clusters, however covering only a small area on the sky. Multiple crossings of sheets and filaments over larger distances may give rise to noticeable deflections, depending on the model adopted for the magnetic seed field. Based on our results we argue that over a large fraction of the sky the deflections are likely to remain smaller than the present experimental angular sensitivity. Therefore, we conclude that forthcoming air shower experiments should be able to locate sources of UHE protons and shed more light on the nature of cosmological MFs.Comment: 3revised version, JCAP, accepte

    Resonant Production of Topological Defects

    Get PDF
    We describe a novel phenomenon in which vortices are produced due to resonant oscillations of a scalar field which is driven by a periodically varying temperature T, with T remaining much below the critical temperature TcT_c. Also, in a rapid heating of a localized region to a temperature {\it below} TcT_c, far separated vortex and antivortex can form. We compare our results with recent models of defect production during reheating after inflation. We also discuss possible experimental tests of our predictions of topological defect production {\it without} ever going through a phase transition.Comment: Revtex, 13 pages including 5 postscript figure

    On the Specific Features of Temperature Evolution in Ultracold Plasmas

    Full text link
    A theoretical interpretation of the recent experimental studies of temperature evolution in the course of time in the freely-expanding ultracold plasma bunches, released from a magneto-optical trap, is discussed. The most interesting result is finding the asymptotics of the form T_e ~ t^{-(1.2 +/- 0.1)} instead of t^{-2}, which was expected for the rarefied monatomic gas during inertial expansion. As follows from our consideration, the substantially decelerated decay of the temperature can be well explained by the specific features of the equation of state for the ultracold plasmas with strong Coulomb's coupling, whereas a heat release due to inelastic processes (in particular, three-body recombination) does not play an appreciable role in the first approximation. This conclusion is confirmed both by approximate analytical estimates, based on the model of "virialization" of the charged-particle energies, and by the results of "ab initio" numerical simulation. Moreover, the simulation shows that the above-mentioned law of temperature evolution is approached very quickly--when the virial criterion is satisfied only within a factor on the order of unity.Comment: LaTeX + 3 eps figures, 16 pages. Plasma Physics Reports, v.37, in press (2011
    • …
    corecore