66 research outputs found

    Memory function formalism approach to electrical conductivity and optical response of dilute magnetic semiconductors

    Get PDF
    A combination of the memory function formalism and time-dependent density-functional theory is applied to transport in dilute magnetic semiconductors. The approach considers spin and charge disorder and electron-electron interaction on an equal footing. Within the weak disorder limit and using a simple parabolic approximation for the valence band we show that Coulomb and exchange scattering contributions to the resistivity in GaMnAs are of the same order of magnitude. The positional correlations of defects result in a significant increase of Coulomb scattering, while the suppression of localized spin fluctuations in the ferromagnetic phase contributes substantially to the experimentally observed drop of resistivity below T_c. A proper treatment of dynamical screening and collective excitations is essential for an accurate description of infrared absorption.Comment: Proceedings of the 13th Brazilian Workshop on Semiconductors Physic

    Intersubband spin-orbit coupling and spin splitting in symmetric quantum wells

    Get PDF
    In semiconductors with inversion asymmetry, spin-orbit coupling gives rise to the well-known Dresselhaus and Rashba effects. If one considers quantum wells with two or more conduction subbands, an additional, intersubband-induced spin-orbit term appears whose strength is comparable to the Rashba coupling, and which remains finite for symmetric structures. We show that the conduction band spin splitting due to this intersubband spin-orbit coupling term is negligible for typical III-V quantum wells

    Response properties of III-V dilute magnetic semiconductors: interplay of disorder, dynamical electron-electron interactions and band-structure effects

    Get PDF
    A theory of the electronic response in spin and charge disordered media is developed with the particular aim to describe III-V dilute magnetic semiconductors like GaMnAs. The theory combines a detailed k.p description of the valence band, in which the itinerant carriers are assumed to reside, with first-principles calculations of disorder contributions using an equation-of-motion approach for the current response function. A fully dynamic treatment of electron-electron interaction is achieved by means of time-dependent density functional theory. It is found that collective excitations within the valence band significantly increase the carrier relaxation rate by providing effective channels for momentum relaxation. This modification of the relaxation rate, however, only has a minor impact on the infrared optical conductivity in GaMnAs, which is mostly determined by the details of the valence band structure and found to be in agreement with experiment.Comment: 15 pages, 9 figure

    Transport and optical conductivity in dilute magnetic semiconductors

    Get PDF
    doi: 10.1088/0953-8984/21/8/084202 http://iopscience.iop.org/0953-8984/21/8/084202/pdf/0953-8984_21_8_084202.pdfA theory of transport in spin and charge disordered media is developed, with a particular emphasis on dilute magnetic semiconductors. The approach is based on the equation of motion for the current-current response function and considers both spin and charge disorder and electron-electron interaction on an equal footing. The formalism is applied to the specific case of Ga1−xMnxAs. Within the single parabolic band approximation it is shown that both spin (p-d exchange) and charge (Coulomb) scattering contributions to the resistivity are of the same order of magnitude and should be treated simultaneously. Positional correlations of charged impurities are shown to significantly increase the Coulomb scattering. In the magnetically ordered phase, the suppression of localized spin fluctuations leads to a sizable reduction of spin scattering, which may contribute to the experimentally observed drop in resistivity below the critical temperature. The developed model allows for a comprehensive treatment of electron-electron interaction, screening and correlation effects by means of time-dependent density-functional theory. It is shown that collective modes and a dynamical treatment of electron-electron interaction are essential for an accurate description of the infrared absorption spectrum.This work was supported by DOE grant no. DE-FG02-05ER46213

    Enhanced carrier scattering rates in dilute magnetic semiconductors with correlated impurities

    Get PDF
    In III-V dilute magnetic semiconductors (DMSs) such as Ga1x_{1-x}Mnx_xAs, the impurity positions tend to be correlated, which can drastically affect the electronic transport properties of these materials. Within the memory function formalism we have derived a general expression for the current relaxation kernel in spin and charge disordered media and have calculated spin and charge scattering rates in the weak-disorder limit. Using a simple model for magnetic impurity clustering, we find a significant enhancement of the charge scattering. The enhancement is sensitive to cluster parameters and may be controllable through post-growth annealing.Comment: 4 pages, 3 figure

    Temperature-dependent resistivity of ferromagnetic GaMnAs: Interplay between impurity scattering and many-body effects

    Get PDF
    The static conductivity of the dilute magnetic semiconductor GaMnAs is calculated using the memory function formalism and time-dependent density-functional theory to account for impurity scattering and to treat Hartree and exchange interactions within the hole gas. We find that the Coulomb scattering off the charged impurities alone is not sufficient to explain the experimentally observed drop in resistivity below the ferromagnetic transition temperature: the often overlooked scattering off the fluctuations of localized spins is shown to play a significant role

    Mapping of quantum well eigenstates with semimagnetic probes

    Full text link
    We present results of transmission measurements on CdTe quantum wells with thin semimagnetic CdMnTe probe layers embedded in various positions along the growth axis. The presence of the probes allow us to map the probability density functions by two independent methods: analyzing the exciton energy position and the exciton Zeeman splitting. We apply both approaches to map the first three quantum well eigenstates and we find that both of them yield equally accurate results.Comment: Accepted for publication in Physical Review
    corecore