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The static conductivity of the diluted magnetic semiconductor Ga1−xMnxAs is calculated using an equation
of motion approach for the current response combined with time-dependent density-functional theory to ac-
count for Hartree and exchange interactions within the hole gas. We find that the Coulomb scattering off the
charged impurities alone is not sufficient to explain the experimentally observed drop in resistivity below the
ferromagnetic transition temperature: the often overlooked scattering off the fluctuations of localized spins is
shown to play a significant role.
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I. INTRODUCTION

The perspective of utilizing the charge and the spin of the
electrons for the development of new electronic device ap-
plications has generated tremendous interest in the field of
spintronics.1 A unique combination of magnetic and semi-
conducting properties makes dilute magnetic semiconductors
�DMSs� very attractive for various spintronics applications.2

Among the family of DMSs, much attention has been paid to
Ga1−xMnxAs since the discovery of its relatively high ferro-
magnetic transition temperature2 with a current record of
Tc=185 K.3

Unlike most other III-V DMSs, the nature of the itinerant
carriers in Ga1−xMnxAs is still under debate. It is widely
accepted that for low-doped insulating samples the Fermi
energy lies in a narrow impurity band. For more heavily
doped, high-Tc metallic samples there are strong indications
that the impurity band merges with the host semiconductor
valence band forming mostly hostlike states at the Fermi
energy with some low-energy tail of disorder-related local-
ized states.4 First-principles calculations5–7 have so far not
been fully conclusive regarding the nature of the itinerant
carriers in this regime and further theoretical studies continue
to be necessary. The question is thus, in essence, whether the
valence-band8 or impurity-band9 picture is more adequate to
describe the spectrum of experimental observations in
Ga1−xMnxAs.

The purpose of this paper is to present a study which
supports the valence-band picture for electronic transport
properties and for the optical conductivity in Ga1−xMnxAs. In
this material, unlike in II-VI DMSs, the magnetic ions in
substitutional positions act as acceptors delivering holes and
producing not only localized spins but also charged defects.
We will argue that it is important to treat disorder and many-
body effects beyond the simple relaxation time and static
screening models which were used in previous theoretical
studies.10–12

Earlier we developed a theory of transport in charge- and
spin-disordered media which combines a multiband k ·p ap-
proach for an accurate description of the valence-band states
with a more comprehensive treatment of disorder and
electron-electron interaction.13,14 Our theory is based on an
equation of motion approach for the current-current response
function15,16 and has some similarity with the memory func-
tion approach.17–19

In this paper we apply our formalism to describe the
transport properties of Ga1−xMnxAs in the static regime. Spe-
cifically, we focus on the pronounced drop of the resistivity
below Tc which has been observed for optimally annealed
metallic samples.20–23 There exist several earlier studies ad-
dressing this and related problems with different theoretical
approaches.24–26 Lopez-Sancho and Brey24 considered the
temperature dependence of the Coulomb scattering off the
acceptor centers and found that the carrier relaxation rate is
reduced by around 20% in the ferromagnetic phase, consis-
tent with the experimentally observed drop in resistivity.20

This drop was attributed entirely to the effects associated
with the scattering off Coulomb disorder. The main mecha-
nism found to be responsible for the observed drop in resis-
tivity was the change in the semiconductor band structure:
during the transition from the paramagnetic to the ferromag-
netic state, the giant spin splitting of the energy bands sub-
stantially modifies the shape of the Fermi surface, thus alter-
ing the possible scattering wave vectors and, consequently,
the magnitude of scattering matrix elements.

These findings speak in favor of the valence-band picture
of Ga1−xMnxAs. However, the model of Ref. 24 employed a
simplified treatment for the screening of the charge disorder
by itinerant carriers, neglecting the exchange part of the
electron-electron interaction within the hole liquid. Further-
more, the scattering off the fluctuations of localized spins
was ignored. We will show that both effects play an impor-
tant role in spin-polarized systems and should be included in
the valence-band picture model of the itinerant holes in
Ga1−xMnxAs. In fact, our calculations suggest that the previ-
ously proposed origin of the resistivity drop in the ferromag-
netic phase should be revised: the main reduction in the scat-
tering rate comes from the suppression of the fluctuations of
localized spins in the magnetically ordered state.

II. THEORY

To investigate the drop in resistivity below Tc let us first
look at the standard expression for the static conductivity
obtained from the semiclassical Boltzmann equation,11
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where the summation is over the wave vector k and the
energy-band index n. The part of Eq. �1� which is most sen-
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sitive to temperature is the carrier scattering rate �n,k
−1 . The

task is therefore to derive a microscopic expression for �n,k
−1

which accounts for all relevant scattering mechanisms, as
well as for electronic many-body effects.

We consider a system described by the Hamiltonian

Ĥ = Ĥe + Ĥm + Ĥd, �2�

where Ĥe is the contribution of the itinerant carriers and Ĥm
represents the subsystem of localized magnetic spins. These
two terms constitute the “clean” part of the total Hamil-
tonian. The last term in Eq. �2� describes disorder in the
system

Ĥd = V2�
k
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where the four-component charge- and spin-disorder scatter-
ing potential
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is coupled to the four-component vector of charge- and spin-
density operators of itinerant carriers
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ŝ+

ŝ−
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Here, �� ��=1,+ ,− ,z� is defined via the Pauli matrices,
where �1 is the 2	2 unit matrix, �
= ��x
 i�y� /2, and
�un,q� are the two-component Bloch function spinors with
wave vector q and band index n. The summation in Eq. �4� is
performed over all defects. Note that the mean-field part of
p-d exchange interaction between itinerant holes and local-
ized spins is absorbed into the clean system band-structure

Hamiltonian Ĥe; disorder in our model consists of the Cou-
lomb potential of charge defects and fluctuations of localized
spins around the mean-field value.

The general case of multiple types of defects, including
defect correlations, was considered in Ref. 13. For simplicity
we here include only the most important defect type, namely,
randomly distributed manganese ions in gallium substitu-
tional positions �MnGa�. Our model treats localized spins
as quantum-mechanical operators coupled to the band
carriers via a contact Heisenberg interaction featuring a
momentum-independent exchange constant J. We use the

value of VJ=−55 meV nm3, which corresponds to the
widely used DMS p-d exchange constant N0�=−1.2 eV.8

The z axis is chosen along the direction of the macroscopic
magnetization.

Our theory of electronic transport in spin- and charge-
disordered media is based on the equation of motion15,16 for
the paramagnetic current response of the full, disordered sys-
tem

� jp�jp�
�r,r�,�� = −

i

�
�����	 ĵp���,r�, ĵp��r��
�H, �7�

where

ĵp���,r� = ei/�Ĥ� ĵp��r�e−i/�Ĥ� �8�

is the paramagnetic current-density operator in Heisenberg
representation and � ,�=x ,y ,z are Cartesian coordinates.
During the derivation we assumed our system to be macro-
scopically homogeneous, which is justified if the coherence
length of the electrons is much shorter than the system size.
In this case, summing over all electrons will leave us with an
averaged effect of disorder that does not depend on the par-
ticular disorder configuration. For such macroscopically ho-
mogeneous systems the response at point r depends only on
the distance r−r� to the perturbation and not on the particu-
lar choice of points r and r�.

A detailed derivation of the time evolution of the response
function, Eq. �7�, has been carried out in Ref. 14; a key step
along the derivation involves the fluctuating force response
function

�F
�
dF

�
d�q,�� = −

i

�
�����	F̂�

d�q,��,F̂�
d�− q�
�H, �9�

where

F̂�
d�q,�� = −

iV

m
�
q�

q��U�̂ �q�,�� · ��̂�q − q�,�� �10�

is the fluctuating �disorder-induced� part of the driving force
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To deal with the mixing of band carrier and localized spin
operators that appears in expression �9�, we make the follow-
ing decoupling approximation
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This decoupling procedure means that we neglect the influ-
ence of the itinerant carriers on the localized spins. There-
fore, our approach does not include magnetic polaron effects
and lacks the microscopic features of carrier-mediated ferro-
magnetism. The latter, however, can be reinstated to some
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extent by introducing a phenomenological Heisenberg-type

term in the magnetic subsystem Hamiltonian Ĥm. By com-
paring the final expression for the current response with the
Drude formula in the weak disorder limit we identify the
tensor of Drude-type frequency- and momentum-dependent
relaxation rates of the form

���
−1 �q,�� = i
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�
k

�


k�k��Û��− k�Û
�k��Hm

	 	����
�q − k,�� − ����
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 + �A

−1, �13�

where n is the carrier concentration, ����
�k ,�� are charge-
and spin-density response functions associated with the op-
erators, Eq. �6�, and the superscript c refers to the clean
system. The form of Eq. �13� is similar to the frequency- and
momentum-dependent memory function used in the standard
memory function formalism.17–19

The last term in Eq. �13� stands for additional contribu-
tions which arise in magnetically ordered systems only. They
result from the second term of Eq. �12� and cannot be ex-
pressed in the convenient form of density and spin-density
response functions. Here, we just give the clean system and
q=0 limit, which suffices to illustrate the general structure
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k�k��	Û��k�,Û
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The general expression for �A
−1 as well as more details of the

derivation of Eq. �13� can be found in Ref. 14.
All information about the itinerant carriers, including

band structure and electron-electron interaction, is contained
within the set of charge- and spin-density response functions
����
�k ,��. Strictly speaking, these response functions cor-
respond to the disordered system, and Eq. �13� should be
calculated self-consistently.27 We here assume that the disor-
der is sufficiently weak so that we can approximate Eq. �13�
by expanding to second order in the disorder potential Û�k�,
and thus replace ����
�k ,�� by its clean system counterpart
����


c �k ,��.
To account for the complexity of the band structure, we

use a standard eight-band k ·p approach with contributions
from the remote bands taken up to the second order in the
wave vector.28 The mean-field part of the p-d exchange in-
teraction between itinerant holes and localized spins causes a
spin splitting of the bands of the semiconductor host mate-
rial. Technical details of this multiband linear-response ap-
proach will be published elsewhere.

The major advantage of Eq. �13� is that it can be com-
bined in a straightforward manner with time-dependent
density-functional theory �TDDFT�,29 which allows us to de-
scribe electron-electron interaction effects, including correla-
tions and collective modes, in principle, exactly. In TDDFT
the charge- and spin-density response functions of the inter-
acting system are written as follows:30

�
=

−1�q,�� = �0=
−1�q,�� − v=�q� − fxc=�q,�� , �15�

where �0= denotes the matrix of response functions of the
noninteracting system, v=�q� is the Hartree part of the
electron-electron interactions, and fxc= is the matrix of ex-
change and correlation kernels. All quantities in Eq. �15� are
4	4 matrices; according to Eq. �5�, the first component is
charge, and the other components are spin +, −, and z. As a
simplification we use only the exchange part of fxc= and apply
the adiabatic local spin-density approximation. The local-
field factors for partially spin-polarized system were calcu-
lated according to Ref. 31.

Since the mean-field part of the p-d exchange interaction
is extracted from the disorder Hamiltonian, the total relax-
ation rate, Eq. �13�, can be separated into contributions asso-
ciated with Coulomb disorder and with fluctuations of the
localized spins. The transverse component �perpendicular to
the magnetization� of the relaxation rate tensor in the long
wavelength �q=0� and static ��→0� limit then has the form

�xx
−1 = �c
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where the charge-disorder contribution is
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and the contribution from the fluctuations of the localized
spins is given by
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Here, ni denotes the concentration of MnGa defects. U�k�
represents the Coulomb potential of a single acceptor center
screened by the dielectric constant of the host material,
where we take �=13 for GaAs; the screening by the electron
liquid is absorbed in the band-carrier response functions. The
angular brackets in Eq. �18� denote the thermodynamic av-
erage with respect to the magnetic subsystem Hamiltonian

Ĥm in Eq. �13�. We assume Ĥm to be a pairwise Heisenberg-
type Hamiltonian. In our calculations we use the experimen-
tal value of Tc as an input parameter and apply a standard
mean-field approach to obtain the temperature dependence of
thermodynamically averaged quantities in Eq. �18�. Our
treatment of spin disorder corresponds to incoherent
scattering32 off uncorrelated spin fluctuations, a mechanism
shown to be the dominant contribution in GaMnAs in the
ferromagnetic state.23

III. RESULTS AND DISCUSSION

Figure 1 presents the temperature dependence of carrier
relaxation rates in Ga1−xMnxAs obtained within our model.
The calculations were performed for a system with Mn con-
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centration x=0.05 and carrier concentration of p=0.3 holes
per Mn in Ga substitutional positions. The left panel shows
the contributions from the scattering off Coulomb disorder
with screening effects accounted for by three different meth-
ods. The dotted line corresponds to screening described
within the Thomas-Fermi approximation for paramagnetic
systems. The screening here is temperature independent and
the 20% drop in the scattering rate in the ferromagnetic
phase is entirely due to modification of the possible scatter-
ing wave vectors.

If, however, we allow changes in the band structure to
affect the screening as well, e.g., on the random-phase ap-
proximation �RPA� level 	first two terms in Eq. �15� and
dashed line in Fig. 1�a�
, the drop in the resistivity in the
ferromagnetic phase is significantly reduced. This effect was
also considered in Ref. 24. But if we now go further and
include the exchange part of electron-electron interaction in
Eq. �15�, then the drop in the resistivity is completely
washed out, see the solid line in Fig. 1�a�. Moreover, for
some parameters, the trend is reversed and the scattering off
Coulomb disorder actually increases in the ferromagnetic
phase.

The explanation for this behavior lies in the exchange
part, which counteracts the larger Hartree part of the
electron-electron interaction and reduces the screening of the
Coulomb disorder potential calculated within RPA. There-
fore we have an overall increase in the charge relaxation rate
once the exchange part of electron-electron interaction is
taken into account, see Fig. 1�a�. On the other hand, the
exchange part of the electron-electron interaction is more
pronounced for spin-polarized systems, resulting in a stron-
ger reduction in the screening of the disorder potential and

thus causing an increase in the Coulomb scattering in the
ferromagnetic phase. This process competes with and, for
some parameters, reverses the reduction in the relaxation rate
due to band-structure-related modifications of the scattering
wave vectors.

It is thus apparent that the scattering off the Coulomb
disorder potential alone cannot be responsible for the experi-
mentally observed drop in resistivity. The other possible con-
tribution is the scattering off the fluctuations of localized
spins. In Fig. 1�b� we plot the temperature dependence of the
scattering rate for both mechanisms. The scattering off spin
fluctuations is often overlooked since its magnitude is sub-
stantially smaller than that of the Coulomb scattering. Due to
effective suppression of spin fluctuations in the ferromag-
netic phase, however, the temperature dependence of this
relaxation mechanism is much more pronounced. Indeed, in
a fully spin-polarized state, the scattering takes place only off
the quantum fluctuations of localized spins. The total relax-
ation rate, Eq. �16�, which is the sum of both contributions,
restores its 20% drop during transition from paramagnetic to
ferromagnetic phase. The majority of this drop is found to be
due to the suppression of the scattering off localized spin
fluctuations.

In Fig. 2 we plot the temperature dependence of the static
resistivity of Ga0.95Mn0.05As, normalized to the paramagnetic
state value. The calculation was done according to Eqs. �1�
and �16�–�18�. Solid and dashed lines correspond to different
levels of compensation in the system, 0.3 and 0.5 hole per
substitutional Mn, respectively �in practice, this number is
difficult to control�. The open squares represent the experi-
mental data of Ref. 20. The theory demonstrates good agree-
ment with experiment.

FIG. 1. �Color online� Temperature dependence of the carrier relaxation rates in Ga0.95Mn0.05As. The vertical line indicates Tc. �a�
Relaxation rates associated with the scattering off Coulomb disorder calculated within different screening models �see text for details�. �b�
Total relaxation rate �solid line� and contributions from scattering off Coulomb disorder �dotted line� and off localized spin fluctuations
�dashed line�.
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IV. CONCLUSION

We have developed a theory of transport in spin- and
charge-disordered media within the valence-band picture of
metallic GaMnAs. The approach combines the multiband

k ·p description of the semiconductor band structure with a
microscopic treatment of disorder and dynamical electron-
electron interaction by the methods of TDDFT. We illustrate
our formalism by describing the experimentally observed
drop in static resistivity of GaMnAs in the ferromagnetic
phase. This problem had been addressed before in Ref. 24
but with a model lacking some important features such as
scattering off the fluctuations of localized spins and electron-
electron interactions beyond RPA that can naturally be in-
cluded in our formalism. Similar to Ref. 24, we obtained
agreement with the experimental observations, but the under-
lying physics is quite different. Much of the drop of resistiv-
ity in the ferromagnetic phase is found to be due to the sup-
pression of localized spin fluctuations in the magnetically
ordered state.

To conclude, we have developed a theoretical description
of itinerant carriers in DMSs within the valence-band picture
that accounts for band structure, scattering from Coulomb
and magnetic impurities, and screening via dynamical many-
body effects. An accurate description of static transport prop-
erties in GaMnAs involves a subtle interplay of all these
ingredients. Our approach is also suitable for frequency-
dependent properties12,33 such as the optical conductivity,
where the presence of collective modes is expected14 to sub-
stantially modify the frequency-dependent carrier relaxation
rates. These effects will be discussed elsewhere.
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