6 research outputs found

    Smooth-filamental transition of active tracer fields stirred by chaotic advection

    Full text link
    The spatial distribution of interacting chemical fields is investigated in the non-diffusive limit. The evolution of fluid parcels is described by independent dynamical systems driven by chaotic advection. The distribution can be filamental or smooth depending on the relative strength of the dispersion due to chaotic advection and the stability of the chemical dynamics. We give the condition for the smooth-filamental transition and relate the H\"older exponent of the filamental structure to the Lyapunov exponents. Theoretical findings are illustrated by numerical experiments.Comment: 4 pages, 3 figure

    Ergodic Properties of Classical SU(2) Lattice Gauge Theory

    Full text link
    We investigate the relationship between the Lyapunov exponents of periodic trajectories, the average and fluctuations of Lyapunov exponents of ergodic trajectories, and the ergodic autocorrelation time for the two-dimensional hyperbola billiard. We then study the fluctuation properties of the ergodic Lyapunov spectrum of classical SU(2) gauge theory on a lattice. Our results are consistent with the notion that this system is globally hyperbolic. Among the many powerful theorems applicable to such systems, we discuss one relating to the fluctuations in the entropy growth rate.Comment: 21 pages, 7 figure

    Excitable media in open and closed chaotic flows

    Get PDF
    We investigate the response of an excitable medium to a localized perturbation in the presence of a two-dimensional smooth chaotic flow. Two distinct types of flows are numerically considered: open and closed. For both of them three distinct regimes are found, depending on the relative strengths of the stirring and the rate of the excitable reaction. In order to clarify and understand the role of the many competing mechanisms present, simplified models of the process are introduced. They are one-dimensional baker-map models for the flow and a one-dimensional approximation for the transverse profile of the filaments.Comment: 14 pages, 16 figure
    corecore