520 research outputs found
Low-Energy Scale Excitations in the Spectral Function of Organic Monolayer Systems
Using high-resolution photoemission spectroscopy we demonstrate that the
electronic structure of several organic monolayer systems, in particular
1,4,5,8-naphthalene tetracarboxylic dianhydride and Copper-phtalocyanine on
Ag(111), is characterized by a peculiar excitation feature right at the Fermi
level. This feature displays a strong temperature dependence and is immediatly
connected to the binding energy of the molecular states, determined by the
coupling between the molecule and the substrate. At low temperatures, the
line-width of this feature, appearing on top of the partly occupied lowest
unoccupied molecular orbital of the free molecule, amounts to only
meV, representing an unusually small energy scale for electronic excitations in
these systems. We discuss possible origins, related e.g. to many-body
excitations in the organic-metal adsorbate system, in particular a generalized
Kondo scenario based on the single impurity Anderson model.Comment: 6 pages, 3 figures, accepted as PRB Rapid Communication
Structural Examination of Au/Ge(001) by Surface X-Ray Diffraction and Scanning Tunneling Microscopy
The one-dimensional reconstruction of Au/Ge(001) was investigated by means of
autocorrelation functions from surface x-ray diffraction (SXRD) and scanning
tunneling microscopy (STM). Interatomic distances found in the SXRD-Patterson
map are substantiated by results from STM. The Au coverage, recently determined
to be 3/4 of a monolayer of gold, together with SXRD leads to three
non-equivalent positions for Au within the c(8x2) unit cell. Combined with
structural information from STM topography and line profiling, two building
blocks are identified: Au-Ge hetero-dimers within the top wire architecture and
Au homo-dimers within the trenches. The incorporation of both components is
discussed using density functional theory and model based Patterson maps by
substituting Germanium atoms of the reconstructed Ge(001) surface.Comment: 5 pages, 3 figure
Ferromagnetic coupling of mononuclear Fe centers in a self-assembled metal-organic network on Au(111)
The magnetic state and magnetic coupling of individual atoms in nanoscale
structures relies on a delicate balance between different interactions with the
atomic-scale surrounding. Using scanning tunneling microscopy, we resolve the
self-assembled formation of highly ordered bilayer structures of Fe atoms and
organic linker molecules (T4PT) when deposited on a Au(111) surface. The Fe
atoms are encaged in a three-dimensional coordination motif by three T4PT
molecules in the surface plane and an additional T4PT unit on top. Within this
crystal field, the Fe atoms retain a magnetic ground state with easy-axis
anisotropy, as evidenced by X-ray absorption spectroscopy and X-ray magnetic
circular dichroism. The magnetization curves reveal the existence of
ferromagnetic coupling between the Fe centers
Site-selective adsorption of naphthalene-tetracarboxylic-dianhydride on Ag(110): First-principles calculations
The mechanism of adsorption of the
1,4,5,8-naphthalene-tetracarboxylic-dianhydride (NTCDA) molecule on the Ag(110)
surface is elucidated on the basis of extensive density functional theory
calculations. This molecule, together with its perylene counterpart, PTCDA, are
archetype organic semiconductors investigated experimentally over the past 20
years. We find that the bonding of the molecule to the substrate is highly
site-selective, being determined by electron transfer to the LUMO of the
molecule and local electrostatic attraction between negatively charged carboxyl
oxygens and positively charged silver atoms in [1-10] atomic rows. The
adsorption energy in the most stable site is 0.9eV. A similar mechanism is
expected to govern the adsorption of PTCDA on Ag(110) as well.Comment: 8 pages, 4 figures, high-quality figures available upon reques
Observation of individual molecules trapped on a nanostructured insulator
For the first time, ordered polar molecules confined in monolayer-deep
rectangular pits produced on an alkali halide surface by electron irradiation
have been resolved at room temperature by non-contact atomic force microscopy.
Molecules self-assemble in a specific fashion inside pits of width smaller than
15 nm. By contrast no ordered aggregates of molecules are observed on flat
terraces. Conclusions regarding nucleation and ordering mechanisms are drawn.
Trapping in pits as small as 2 nm opens a route to address single molecules
Nonuniversal correlations in multiple scattering
We show that intensity of a wave created by a source embedded inside a
three-dimensional disordered medium exhibits a non-universal space-time
correlation which depends explicitly on the short-distance properties of
disorder, source size, and dynamics of disorder in the immediate neighborhood
of the source. This correlation has an infinite spatial range and is
long-ranged in time. We suggest that a technique of "diffuse microscopy" might
be developed employing spatially-selective sensitivity of the considered
correlation to the disorder properties.Comment: 15 pages, 3 postscript figures, accepted to Phys. Rev.
Profile scaling in decay of nanostructures
The flattening of a crystal cone below its roughening transition is studied
by means of a step flow model. Numerical and analytical analyses show that the
height profile, h(r,t), obeys the scaling scenario dh/dr = F(r t^{-1/4}). The
scaling function is flat at radii r<R(t) \sim t^{1/4}. We find a one parameter
family of solutions for the scaling function, and propose a selection criterion
for the unique solution the system reaches.Comment: 4 pages, RevTex, 3 eps figure
reentrance effect in normal-metal/superconducting hybrid loops
We have measured the transport properties of two mesoscopic hybrid loops
composed of a normal-metal arm and a superconducting arm. The samples differed
in the transmittance of the normal/superconducting interfaces. While the low
transmittance sample showed monotonic behavior in the low temperature
resistance, magnetoresistance and differential resistance, the high
transmittance sample showed reentrant behavior in all three measurements. This
reentrant behavior is due to coherent Andreev reflection at the
normal/superconducting interfaces. We compare the reentrance effect for the
three different measurements and discuss the results based on the theory of
quasiclassical Green's functions
Anomalous Conductance Distribution in Quasi-One Dimension: Possible Violation of One-Parameter Scaling Hypothesis
We report measurements of conductance distribution in a set of
quasi-one-dimensional gold wires. The distribution includes the second cumulant
or the variance which describes the universal conductance fluctuations, and the
third cumulant which denotes the leading deviation. We have observed an
asymmetric contribution--or, a nonvanishing third cumulant--contrary to the
expectation for quasi-one-dimensional systems in the noninteracting theories in
the one-parameter scaling framework, which include the perturbative
diagrammatic calculations and the random matrix theory.Comment: 5 PAGE
The profile of a decaying crystalline cone
The decay of a crystalline cone below the roughening transition is studied.
We consider local mass transport through surface diffusion, focusing on the two
cases of diffusion limited and attachment-detachment limited step kinetics. In
both cases, we describe the decay kinetics in terms of step flow models.
Numerical simulations of the models indicate that in the attachment-detachment
limited case the system undergoes a step bunching instability if the repulsive
interactions between steps are weak. Such an instability does not occur in the
diffusion limited case. In stable cases the height profile, h(r,t), is flat at
radii r<R(t)\sim t^{1/4}. Outside this flat region the height profile obeys the
scaling scenario \partial h/\partial r = {\cal F}(r t^{-1/4}). A scaling ansatz
for the time-dependent profile of the cone yields analytical values for the
scaling exponents and a differential equation for the scaling function. In the
long time limit this equation provides an exact description of the discrete
step dynamics. It admits a family of solutions and the mechanism responsible
for the selection of a unique scaling function is discussed in detail. Finally
we generalize the model and consider permeable steps by allowing direct adatom
hops between neighboring terraces. We argue that step permeability does not
change the scaling behavior of the system, and its only effect is a
renormalization of some of the parameters.Comment: 25 pages, 18 postscript figure
- …