2,867 research outputs found

    Bilayer Membrane in Confined Geometry: Interlayer Slide and Steric Repulsion

    Full text link
    We derived free energy functional of a bilayer lipid membrane from the first principles of elasticity theory. The model explicitly includes position-dependent mutual slide of monolayers and bending deformation. Our free energy functional of liquid-crystalline membrane allows for incompressibility of the membrane and vanishing of the in-plane shear modulus and obeys reflectional and rotational symmetries of the flat bilayer. Interlayer slide at the mid-plane of the membrane results in local difference of surface densities of the monolayers. The slide amplitude directly enters free energy via the strain tensor. For small bending deformations the ratio between bending modulus and area compression coefficient, Kb/KA, is proportional to the square of monolayer thickness, h. Using the functional we performed self-consistent calculation of steric potential acting on bilayer between parallel confining walls separated by distance 2d. We found that temperature-dependent curvature at the minimum of confining potential is enhanced four times for a bilayer with slide as compared with a unit bilayer. We also calculate viscous modes of bilayer membrane between confining walls. Pure bending of the membrane is investigated, which is decoupled from area dilation at small amplitudes. Three sources of viscous dissipation are considered: water and membrane viscosities and interlayer drag. Dispersion has two branches. Confinement between the walls modifies the bending mode with respect to membrane in bulk solution. Simultaneously, inter-layer slipping mode, damped by viscous drag, remains unchanged by confinement.Comment: 23 pages,3 figures, pd

    Giant vesicles at the prolate-oblate transition: A macroscopic bistable system

    Full text link
    Giant phospholipid vesicles are shown to exhibit thermally activated transitions between a prolate and an oblate shape on a time scale of several seconds. From the fluctuating contour of such a vesicle we extract ellipticity as an effective reaction coordinate whose temporal probability distribution is bimodal. We then reconstruct the effective potential from which we derive an activation energy of the order of kBTk_BT in agreement with theoretical calculations. The dynamics of this transition is well described within a Kramers model of overdamped diffusion in a bistable potential. Thus, this system can serve as a model for macroscopic bistability.Comment: 10 pages, LaTeX, epsfig, 4 eps figures included, to appear in Europhys. Let

    Elastic deformation of a fluid membrane upon colloid binding

    Full text link
    When a colloidal particle adheres to a fluid membrane, it induces elastic deformations in the membrane which oppose its own binding. The structural and energetic aspects of this balance are theoretically studied within the framework of a Helfrich Hamiltonian. Based on the full nonlinear shape equations for the membrane profile, a line of continuous binding transitions and a second line of discontinuous envelopment transitions are found, which meet at an unusual triple point. The regime of low tension is studied analytically using a small gradient expansion, while in the limit of large tension scaling arguments are derived which quantify the asymptotic behavior of phase boundary, degree of wrapping, and energy barrier. The maturation of animal viruses by budding is discussed as a biological example of such colloid-membrane interaction events.Comment: 14 pages, 9 figures, REVTeX style, follow-up on cond-mat/021242

    Effective temperatures of a heated Brownian particle

    Full text link
    We investigate various possible definitions of an effective temperature for a particularly simple nonequilibrium stationary system, namely a heated Brownian particle suspended in a fluid. The effective temperature based on the fluctuation dissipation ratio depends on the time scale under consideration, so that a simple Langevin description of the heated particle is impossible. The short and long time limits of this effective temperature are shown to be consistent with the temperatures estimated from the kinetic energy and Einstein relation, respectively. The fluctuation theorem provides still another definition of the temperature, which is shown to coincide with the short time value of the fluctuation dissipation ratio

    Measurements of greenhouse gases and related tracers at Bialystok tall tower station in Poland

    Get PDF
    Quasi-continuous, in-situ measurements of atmospheric CO2, O2/N2, CH4, CO, N2O, and SF6 have been performed since August 2005 at the tall tower station near Bialystok, in Eastern Poland, from five heights up to 300 m. Besides the in-situ measurements, flask samples are filled approximately weekly and measured at Max-Planck Institute for Biogeochemistry for the same species and, in addition, for H2, Ar/N2 and the stable isotopes 13C and 18O in CO2. The in-situ measurement system was built based on commercially available analysers: a LiCor 7000 for CO2, a Sable Systems "Oxzilla" FC-2 for O2, and an Agilent 6890 gas chromatograph for CH4, CO, N2O and SF6. The system was optimized to run continuously with very little maintenance and to fulfill the precision requirements of the CHIOTTO project. The O2/N2 measurements in particular required special attention in terms of technical setup and quality assurance. The evaluation of the performance after more than three years of operation gave overall satisfactory results, proving that this setup is suitable for long term remote operation with little maintenance. The precision achieved for all species is within or close to the project requirements. The comparison between the in-situ and flask sample results, used to verify the accuracy of the in-situ measurements, showed no significant difference for CO2, O2/N2, CH4 and N2O, and a very small difference for SF6. The same comparison however revealed a statistically significant difference for CO, of about 6.5 ppb, for which the cause could not be fully explained. From more than three years of data, the main features at Bialystok have been characterized in terms of variability, trends, and seasonal and diurnal variations. CO2 and O2/N2 show large short term variability, and large diurnal signals during the warm seasons, which attenuate with the increase of sampling height. The trends calculated from this dataset, over the period August 2005 to December 2008, are 2.02±0.46 ppm/year for CO2 and -23.2±2.5 per meg/year for O2/N2. CH4, CO and N2O show also higher variability at the lower sampling levels, which in the case of CO is strongly seasonal. Diurnal variations in CH4, CO and N2O mole fractions can be observed during the warm season, due to the periodicity of vertical mixing combined with the diurnal cycle of anthropogenic emissions. We calculated increase rates of 10.1±4.4 ppb/year for CH4, (-8.3)±5.3 ppb/year for CO and 0.67±0.08 ppb/year for N2O. SF6 shows only few events, and generally no vertical gradients, which suggests that there are no significant local sources. A weak SF6 seasonal cycle has been detected, which most probably is due to the seasonality of atmospheric circulation. SF6 increased during the time of our measurement at an average rate of 0.29±0.01 ppt/year

    In-situ measurements of oxygen, carbon monoxide and greenhouse gases from Ochsenkopf tall tower in Germany

    Get PDF
    We present 2.5 years (from June 2006 to December 2008) of in-situ measurements of CO2, O2, CH4, CO, N2O and SF6 mixing ratios sampled from 23, 90 and 163m above ground on the Ochsenkopf tower in the Fichtelgebirge range, Germany (50?0104900 N, 11?4803000 E, 1022ma.s.l.). In addition to the in-situ measurements, flask samples are taken at Ochsenkopf at approximately weekly intervals and are subsequently analysed for the mixing ratios of the same species, as well as H2, and the stable isotopes, ?13C, ?18O in CO2. The in-situ measurements of CO2 and O2 from 23m show substantial diurnal variations that are modulated by biospheric fluxes, combustion of fossil fuels, and by diurnal changes in the planetary boundary layer height. Measurements from 163m exhibit only very weak diurnal variability, as this height (1185ma.s.l.) is generally above the nocturnal boundary layer. CH4, CO, N2O and SF6 show little diurnal variation even at 23m owing to the absence of any significant diurnal change in the fluxes and the absence of any strong local sources or sinks. From the in-situ record, the seasonal cycles of the gas species have been characterized and the multi-annual trends determined. Because the record is short, the calculation of the trend is sensitive to inter-annual variations in the amplitudes of the seasonal cycles. However, for CH4 a significant change in the growth-rate was detected for 2006.5–2008.5 as compared with the global mean from 1999 to 2006 and is consistent with other recent observations of a renewed increasing global growth rate in CH4 since the beginning of 2007

    Tagged particle in a sheared suspension: effective temperature determines density distribution in a slowly varying external potential beyond linear response

    Full text link
    We consider a sheared colloidal suspension under the influence of an external potential that varies slowly in space in the plane perpendicular to the flow and acts on one selected (tagged) particle of the suspension. Using a Chapman-Enskog type expansion we derive a steady state equation for the tagged particle density distribution. We show that for potentials varying along one direction only, the tagged particle distribution is the same as the equilibrium distribution with the temperature equal to the effective temperature obtained from the violation of the Einstein relation between the self-diffusion and tagged particle mobility coefficients. We thus prove the usefulness of this effective temperature for the description of the tagged particle behavior beyond the realm of linear response. We illustrate our theoretical predictions with Brownian dynamics computer simulations.Comment: Accepted for publication in Europhys. Let

    Dynamics of orientational ordering in fluid membranes

    Get PDF
    We study the dynamics of orientational phase ordering in fluid membranes. Through numerical simulation we find an unusually slow coarsening of topological texture, which is limited by subdiffusive propagation of membrane curvature. The growth of the orientational correlation length ξ\xi obeys a power law ξtw\xi \propto t^w with w<1/4w < 1/4 in the late stage. We also discuss defect profiles and correlation patterns in terms of long-range interaction mediated by curvature elasticity.Comment: 5 pages, 3 figures (1 in color); Eq.(9) correcte

    Two-Component Fluid Membranes Near Repulsive Walls: Linearized Hydrodynamics of Equilibrium and Non-equilibrium States

    Full text link
    We study the linearized hydrodynamics of a two-component fluid membrane near a repulsive wall, via a model which incorporates curvature- concentration coupling as well as hydrodynamic interactions. This model is a simplified version of a recently proposed one [J.-B. Manneville et al. Phys. Rev. E, 64, 021908 (2001)] for non-equilibrium force-centres embedded in fluid membranes, such as light-activated bacteriorhodopsin pumps incorporated in phospholipid (EPC) bilayers. The pump/membrane system is modeled as an impermeable, two-component bilayer fluid membrane in the presence of an ambient solvent, in which one component, representing active pumps, is described in terms of force dipoles displaced with respect to the bilayer midpoint. We first discuss the case in which such pumps are rendered inactive, computing the mode structure in the bulk as well as the modification of hydrodynamic properties by the presence of a nearby wall. We then discuss the fluctuations and mode structure in steady state of active two-component membranes near a repulsive wall. We find that proximity to the wall smoothens membrane height fluctuations in the stable regime, resulting in a logarithmic scaling of the roughness even for initially tensionless membranes. This explicitly non-equilibrium result, a consequence of the incorporation of curvature-concentration coupling in our treatment, also indicates that earlier scaling arguments which obtained an increase in the roughness of active membranes near repulsive walls may need to be reevaluated.Comment: 39 page Latex file, 3 encapsulated Postscript figure
    corecore