2,413 research outputs found
The Mobility Enterprise - Improving Auto Productivity
The Mobility Enterprise is a particular version of a shared vehicle fleet, aimed at solving the problem of low automobile productivity. The automobile consumes a large portion of Americaâs transportation energy supply. It also operates much of the time with unused capacity: vacant seats and empty cargo space. Since programs to fill those vacant seats âride sharing and high occupancy vehicle incentives âhave fallen so far short of their objectives, a new approach is warranted. The enterpriseâs central concept is matching vehicle attributes to travel needs. Generally, a household purchases vehicles for those few trips that require a large capacity, rather than for the majority of trips (usually to work) that have minimal vehicular needs. If a household could tailor its âimmediate accessâ fleet to these frequent trips and still retain reasonable access to larger-capacity special purpose vehicles (SPVâs), considerable economies could be achieved. The household is relieved of owning seldom-used excess capacity, and automobile productivity and efficiency are greatly improved. Having easy access to a shared fleet of SPVâs also affords a household an increase in the quality and economy of its travel experiences. This paper describes a research project recently begun at Purdue that involves a comprehensive investigation of the Mobility Enterprise concept. Questions of institutional barriers, consumer response, and organization and management are discussed here as keys to the fate of the enterprise in the transportation climate of the foreseeable future
Zoosporic marine fungi from the Pacific Northwest (U.S.A.)
An investigation of the zoosporic fungi in the vicinity of the Friday Harbor Laboratory, San Juan Is., Washington, revealed the presence of great numbers of fungi. With one exception ( Olpidium sp. ) these were all biflagellate organisms. Predominating were species (11) of Thraustochytriaceae which abounded in water, in association with seaweeds, intertidal sands, and particularly on the surface of bottom samples down to depths of 298 m. A twelfth species of this group has several peculiarities and needs further investigation. Of the algal parasites, one on Polysiphonia and Pterosiphonia is considered new and termed Eurychasma joycei n. sp.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46146/1/203_2004_Article_BF00410220.pd
Recommended from our members
Assessing mid-latitude dynamics in extreme event attribution systems
Atmospheric modes of variability relevant for extreme temperature and precipitation events are evaluated in models currently being used for extreme event attribution. A 100 member initial condition ensemble of the global circulation model HadAM3P is compared with both the multi-model ensemble from the Coupled Model Inter-comparison Project, Phase 5 (CMIP5) and the CMIP5 atmosphere-only counterparts (AMIP5). The use of HadAM3P allows for huge ensembles to be computed relatively fast, thereby providing unique insights into the dynamics of extremes. The analysis focuses on mid Northern Latitudes (primarily Europe) during winter, and is compared with ERA-Interim reanalysis. The tri-modal Atlantic eddy-driven jet distribution is remarkably well captured in HadAM3P, but not so in the CMIP5 or AMIP5 multi-model mean, although individual models fare better. The well known underestimation of blocking in the Atlantic region is apparent in CMIP5 and AMIP5, and also, to a lesser extent, in HadAM3P. Pacific blocking features are well produced in all modeling initiatives. Blocking duration is biased towards models reproducing too many short-lived events in all three modelling systems. Associated storm tracks are too zonal over the Atlantic in the CMIP5 and AMIP5 ensembles, but better simulated in HadAM3P with the exception of being too weak over Western Europe. In all cases, the CMIP5 and AMIP5 performances were almost identical, suggesting that the biases in atmospheric modes considered here are not strongly coupled to SSTs, and perhaps other model characteristics such as resolution are more important. It is recommended that rather than taking statistics over the entire CMIP5 or AMIP5 available models, only models capable of producing the relevant dynamical phenomena be employed for event attribution analyses
X-ray absorption spectroscopy systematics at the tungsten L-edge
A series of mononuclear six-coordinate tungsten compounds spanning formal oxidation states from 0 to +VI, largely in a ligand environment of inert chloride and/or phosphine, has been interrogated by tungsten L-edge X-ray absorption spectroscopy. The L-edge spectra of this compound set, comprised of [W<sup>0</sup>(PMe<sub>3</sub>)<sub>6</sub>], [W<sup>II</sup>Cl<sub>2</sub>(PMePh<sub>2</sub>)<sub>4</sub>], [W<sup>III</sup>Cl<sub>2</sub>(dppe)<sub>2</sub>][PF<sub>6</sub>] (dppe = 1,2-bis(diphenylphosphino)ethane), [W<sup>IV</sup>Cl<sub>4</sub>(PMePh<sub>2</sub>)<sub>2</sub>], [W<sup>V</sup>(NPh)Cl<sub>3</sub>(PMe<sub>3</sub>)<sub>2</sub>], and [W<sup>VI</sup>Cl<sub>6</sub>] correlate with formal oxidation state and have usefulness as references for the interpretation of the L-edge spectra of tungsten compounds with redox-active ligands and ambiguous electronic structure descriptions. The utility of these spectra arises from the combined correlation of the estimated branching ratio (EBR) of the L<sub>3,2</sub>-edges and the L<sub>1</sub> rising-edge energy with metal Z<sub>eff</sub>, thereby permitting an assessment of effective metal oxidation state. An application of these reference spectra is illustrated by their use as backdrop for the L-edge X-ray absorption spectra of [W<sup>IV</sup>(mdt)<sub>2</sub>(CO)<sub>2</sub>] and [W<sup>IV</sup>(mdt)<sub>2</sub>(CN)<sub>2</sub>]<sup>2â</sup> (mdt<sup>2â</sup> = 1,2-dimethylethene-1,2-dithiolate), which shows that both compounds are effectively W<sup>IV</sup> species. Use of metal L-edge XAS to assess a compound of uncertain formulation requires: 1) Placement of that data within the context of spectra offered by unambiguous calibrant compounds, preferably with the same coordination number and similar metal ligand distances. Such spectra assist in defining upper and/or lower limits for metal Z<sub>eff</sub> in the species of interest; 2) Evaluation of that data in conjunction with information from other physical methods, especially ligand K-edge XAS; 3) Increased care in interpretation if strong Ï-acceptor ligands, particularly CO, or Ï-donor ligands are present. The electron-withdrawing/donating nature of these ligand types, combined with relatively short metal-ligand distances, exaggerate the difference between formal oxidation state and metal Z<sub>eff</sub> or, as in the case of [W<sup>IV</sup>(mdt)<sub>2</sub>(CO)<sub>2</sub>], add other subtlety by modulating the redox level of other ligands in the coordination sphere
Stability of the Autism Diagnostic InterviewâRevised from Pre-School to Elementary School Age in Children with Autism Spectrum Disorders
This study examined the stability of scores on the ADI-R from pre-school to elementary school age in children with autism spectrum disorders (ASD). Participants were 35 children who, at T1, all had a clinical diagnosis of ASD. On initial assessment (mean age 3.5 years; SD 0.6), all met ADI-R algorithm criteria for autism. ADI-R assessments were repeated at follow up (FU; mean age 10.5 years; SD 0.8). Changes in ADI-R total, domain and ADI-R algorithm item scores were assessed. Twentyeight children continued to score above the ADI-R cut-off for autism at FU, although significant decreases in ADI-R domain and item scores were also found. In conclusion, while classification of children according to ADI-R criteria, generally remained stable between pre-school and elementary school age, many children demonstrated significant improvements in symptom severity
Dissipative Chaos in Semiconductor Superlattices
We consider the motion of ballistic electrons in a miniband of a
semiconductor superlattice (SSL) under the influence of an external,
time-periodic electric field. We use the semi-classical balance-equation
approach which incorporates elastic and inelastic scattering (as dissipation)
and the self-consistent field generated by the electron motion. The coupling of
electrons in the miniband to the self-consistent field produces a cooperative
nonlinear oscillatory mode which, when interacting with the oscillatory
external field and the intrinsic Bloch-type oscillatory mode, can lead to
complicated dynamics, including dissipative chaos. For a range of values of the
dissipation parameters we determine the regions in the amplitude-frequency
plane of the external field in which chaos can occur. Our results suggest that
for terahertz external fields of the amplitudes achieved by present-day free
electron lasers, chaos may be observable in SSLs. We clarify the nature of this
novel nonlinear dynamics in the superlattice-external field system by exploring
analogies to the Dicke model of an ensemble of two-level atoms coupled with a
resonant cavity field and to Josephson junctions.Comment: 33 pages, 8 figure
Symbolic Dynamics Analysis of the Lorenz Equations
Recent progress of symbolic dynamics of one- and especially two-dimensional
maps has enabled us to construct symbolic dynamics for systems of ordinary
differential equations (ODEs). Numerical study under the guidance of symbolic
dynamics is capable to yield global results on chaotic and periodic regimes in
systems of dissipative ODEs which cannot be obtained neither by purely
analytical means nor by numerical work alone. By constructing symbolic dynamics
of 1D and 2D maps from the Poincare sections all unstable periodic orbits up to
a given length at a fixed parameter set may be located and all stable periodic
orbits up to a given length may be found in a wide parameter range. This
knowledge, in turn, tells much about the nature of the chaotic limits. Applied
to the Lorenz equations, this approach has led to a nomenclature, i.e.,
absolute periods and symbolic names, of stable and unstable periodic orbits for
an autonomous system. Symmetry breakings and restorations as well as
coexistence of different regimes are also analyzed by using symbolic dynamics.Comment: 35 pages, LaTeX, 13 Postscript figures, uses psfig.tex. The revision
concerns a bug at the end of hlzfig12.ps which prevented the printing of the
whole .ps file from page 2
- âŠ