39,119 research outputs found

    Kosterlitz-Thouless Phase Transition of the ANNNI model in Two Dimensions

    Full text link
    The spin structure of an axial next-nearest-neighbor Ising (ANNNI) model in two dimensions (2D) is a renewed problem because different Monte Carlo (MC) simulation methods predicted different spin orderings. The usual equilibrium simulation predicts the occurrence of a floating incommensurate (IC) Kosterlitz-Thouless (KT) type phase, which never emerges in non-equilibrium relaxation (NER) simulations. In this paper, we first examine previously published results of both methods, and then investigate a higher transition temperature, Tc1T_{c1}, between the IC and paramagnetic phases. In the usual equilibrium simulation, we calculate the layer magnetization on larger lattices (up to 512×512512 \times 512 sites) and estimate Tc11.16JT_{c1} \approx 1.16J with frustration ratio κ(J2/J1)=0.6\kappa (\equiv -J_2/J_1) = 0.6. We examine the nature of the phase transition in terms of the Binder ratio gLg_L of spin overlap functions and the correlation-length ratio ξ/L\xi/L. In the NER simulation, we observe the spin dynamics in equilibrium states by means of an autocorrelation function, and also observe the layer magnetization relaxations from the ground and disordered states. These quantities exhibit an algebraic decay at T1.17JT \lesssim 1.17J. We conclude that the two-dimensional ANNNI model actually admits an IC phase transition of the KT type.Comment: 20 pages, 16 figure

    Structure of the breakpoint region in CVC of the intrinsic Josephson junctions

    Get PDF
    A fine structure of the breakpoint region in the current-voltage characteristics of the coupled intrinsic Josephson junctions in the layered superconductors is found. We establish a correspondence between the features in the current-voltage characteristics and the character of the charge oscillations in superconducting layers in the stack and explain the origin of the breakpoint region structure.Comment: 5 pages, 5 figures. Accepted for Phys.Rev.

    Supersolid of Hardcore Bosons on the Face Centered Cubic Lattice

    Full text link
    We investigate a supersolid state in hardcore boson models on the face-centered-cubic (FCC) lattice. The supersolid state is characterized by a coexistence of crystalline order and superfluidity. Using a quantum Monte Carlo method based on the directed-loop algorithm, we calculate static structure factors and superfluid density at finite temperature, from which we obtain the phase diagram. The supersolid phase exists at intermediate fillings between a three-quarter-filled solid phase and a half-filled solid phase. We also discuss the mechanism of the supersolid state on the FCC lattice.Comment: 5pages, 6figure

    Quantum phase transitions in the sub-ohmic spin-boson model: Failure of the quantum-classical mapping

    Full text link
    The effective theories for many quantum phase transitions can be mapped onto those of classical transitions. Here we show that such a mapping fails for the sub-ohmic spin-boson model which describes a two-level system coupled to a bosonic bath with power-law spectral density, J(omega) ~ omega^s. Using an epsilon expansion we prove that this model has a quantum transition controlled by an interacting fixed point at small s, and support this by numerical calculations. In contrast, the corresponding classical long-range Ising model is known to have an upper-critical dimension at s = 1/2, with mean-field transition behavior controlled by a non-interacting fixed point for 0 < s < 1/2. The failure of the quantum-classical mapping is argued to arise from the long-ranged interaction in imaginary time in the quantum model.Comment: 4 pages, 3 figs; (v2) discussion extended; (v3) marginal changes, final version as published; (v4) added erratum pointing out that main conclusions were incorrect due to subtle failures of the NR

    Linkages in thermal copolymers of lysine

    Get PDF
    The thermal copolymerization of lysine with other alpha-amino acids was studied. The identity of the second amino acid influences various properties of the polymer obtained, including the proportion of alpha and epsilon linkages of lysine. A review of linkages in proteinoids indicates alpha and beta linkages for aspartic acid, alpha and gamma linkages for glutamic acid, alpha and epsilon linkages for lysine, and alpha linkages for other amino acids. Thermal proteinoids are thus more complex in types of linkage than are proteins

    Open-charm meson spectroscopy

    Get PDF
    We present a theoretical framework that accounts for the new DJD_J and DsJD_{sJ} mesons measured in the open-charm sector. These resonances are properly described if considered as a mixture of conventional PP-wave quark-antiquark states and four-quark components. The narrowest states are basically PP-wave quark-antiquark mesons, while the dominantly four-quark states are shifted above the corresponding two-meson threshold, being broad resonances. We study the electromagnetic decay widths as basic tools to scrutiny their nature. The proposed explanation incorporates in a natural way the most recently discovered mesons in charmonium spectroscopy.Comment: 15 pages, 5 tables. Accepted for publication in Phys. Rev.
    corecore