199 research outputs found

    Biological effects of exposure to magnetic resonance imaging: an overview

    Get PDF
    The literature on biological effects of magnetic and electromagnetic fields commonly utilized in magnetic resonance imaging systems is surveyed here. After an introduction on the basic principles of magnetic resonance imaging and the electric and magnetic properties of biological tissues, the basic phenomena to understand the bio-effects are described in classical terms. Values of field strengths and frequencies commonly utilized in these diagnostic systems are reported in order to allow the integration of the specific literature on the bio-effects produced by magnetic resonance systems with the vast literature concerning the bio-effects produced by electromagnetic fields. This work gives an overview of the findings about the safety concerns of exposure to static magnetic fields, radio-frequency fields, and time varying magnetic field gradients, focusing primarily on the physics of the interactions between these electromagnetic fields and biological matter. The scientific literature is summarized, integrated, and critically analyzed with the help of authoritative reviews by recognized experts, international safety guidelines are also cited

    Acoustic cardiac triggering: a practical solution for synchronization and gating of cardiovascular magnetic resonance at 7 Tesla

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To demonstrate the applicability of acoustic cardiac triggering (ACT) for imaging of the heart at ultrahigh magnetic fields (7.0 T) by comparing phonocardiogram, conventional vector electrocardiogram (ECG) and traditional pulse oximetry (POX) triggered 2D CINE acquisitions together with (i) a qualitative image quality analysis, (ii) an assessment of the left ventricular function parameter and (iii) an examination of trigger reliability and trigger detection variance derived from the signal waveforms.</p> <p>Results</p> <p>ECG was susceptible to severe distortions at 7.0 T. POX and ACT provided waveforms free of interferences from electromagnetic fields or from magneto-hydrodynamic effects. Frequent R-wave mis-registration occurred in ECG-triggered acquisitions with a failure rate of up to 30% resulting in cardiac motion induced artifacts. ACT and POX triggering produced images free of cardiac motion artefacts. ECG showed a severe jitter in the R-wave detection. POX also showed a trigger jitter of approximately Ξ”t = 72 ms which is equivalent to two cardiac phases. ACT showed a jitter of approximately Ξ”t = 5 ms only. ECG waveforms revealed a standard deviation for the cardiac trigger offset larger than that observed for ACT or POX waveforms.</p> <p>Image quality assessment showed that ACT substantially improved image quality as compared to ECG (image quality score at end-diastole: ECG = 1.7 Β± 0.5, ACT = 2.4 Β± 0.5, p = 0.04) while the comparison between ECG vs. POX gated acquisitions showed no significant differences in image quality (image quality score: ECG = 1.7 Β± 0.5, POX = 2.0 Β± 0.5, p = 0.34).</p> <p>Conclusions</p> <p>The applicability of acoustic triggering for cardiac CINE imaging at 7.0 T was demonstrated. ACT's trigger reliability and fidelity are superior to that of ECG and POX. ACT promises to be beneficial for cardiovascular magnetic resonance at ultra-high field strengths including 7.0 T.</p

    Heart valve disease: investigation by cardiovascular magnetic resonance

    Get PDF
    Cardiovascular magnetic resonance (CMR) has become a valuable investigative tool in many areas of cardiac medicine. Its value in heart valve disease is less well appreciated however, particularly as echocardiography is a powerful and widely available technique in valve disease. This review highlights the added value that CMR can bring in valve disease, complementing echocardiography in many areas, but it has also become the first-line investigation in some, such as pulmonary valve disease and assessing the right ventricle. CMR has many advantages, including the ability to image in any plane, which allows full visualisation of valves and their inflow/outflow tracts, direct measurement of valve area (particularly for stenotic valves), and characterisation of the associated great vessel anatomy (e.g. the aortic root and arch in aortic valve disease). A particular strength is the ability to quantify flow, which allows accurate measurement of regurgitation, cardiac shunt volumes/ratios and differential flow volumes (e.g. left and right pulmonary arteries). Quantification of ventricular volumes and mass is vital for determining the impact of valve disease on the heart, and CMR is the 'Gold standard' for this. Limitations of the technique include partial volume effects due to image slice thickness, and a low ability to identify small, highly mobile objects (such as vegetations) due to the need to acquire images over several cardiac cycles. The review examines the advantages and disadvantages of each imaging aspect in detail, and considers how CMR can be used optimally for each valve lesion

    Fractional anisotropy in white matter tracts of very-low-birth-weight infants

    Get PDF
    Background: Advances in neonatal intensive care have not yet reduced the high incidence of neurodevelopmental disability among very-low-birth-weight (VLBW) infants. As neurological deficits are related to white-matter injury, early detection is important. Diffusion tensor imaging (DTI) could be an excellent tool for assessment of white-matter injury. Objective: To provide DTI fractional anisotropy (FA) reference values for white-matter tracts of VLBW infants for clinical use. Materials and methods: We retrospectively analysed DTI images of 28 VLBW infants (26-32 weeks gestational age) without evidence of white-matter abnormalities on conventional MRI sequences, and normal developmental outcome (assessed at age 1-3 years). For DTI an echoplanar sequence with diffusion gradient (b = 1,000 s/mm2) applied in 25 non-collinear directions was used. We measured FA and apparent diffusion coefficient (ADC) of different white-matter tracts in the first 4 days of life. Results: A statistically significant correlation was found between gestational age and FA of the posterior limb of the internal capsule in VLBW infants (r = 0.495, P<0.01). Conclusion: Values of FA and ADC were measured in white-matter tracts of VLBW infants. FA of the pyramidal tracts measured in the first few days after birth is related to gestational age

    Left and right ventricle assessment with Cardiac CT: validation study vs. Cardiac MR

    Get PDF
    Objectives To compare Magnetic Resonance (MR) and Computed Tomography (CT) for the assessment of left (LV) and right (RV) ventricular functional parameters. Methods Seventy nine patients underwent both Cardiac CT and Cardiac MR. Images were acquired using short axis (SAX) reconstructions for CT and 2D cine b-SSFP (balanced- steady state free precession) SAX sequence for MR, and evaluated using dedicated software. Results CT and MR images showed good agreement: LV EF (Ejection Fraction) (52Β±14% for CT vs. 52Β±14% for MR; r0 0.73; p>0.05); RV EF (47Β±12% for CT vs. 47Β±12% for MR; r00.74; p>0.05); LV EDV (End Diastolic Volume) (74Β± 21 ml/m 2 for CT vs. 76Β±25 ml/m 2 for MR; r00.59; p>0.05); RV EDV (84Β±25 ml/m 2 for CT vs. 80Β±23 ml/m 2 for MR; r0 0.58; p>0.05); LV ESV (End Systolic Volume)(37Β±19 ml/m 2 for CT vs. 38Β±23 ml/m 2 for MR; r00.76; p>0.05); RV ESV (46Β±21 ml/m 2 for CT vs. 43Β±18 ml/m 2 for MR; r00.70; p>0.05). Intra- and inter-observer variability were good, and the performance of CT was maintained for different EF subgroups. Conclusions Cardiac CT provides accurate and reproducible LVand RV volume parameters compared with MR, and can be considered as a reliable alternative for patients who are not suitable to undergo MR. Key Points β€’ Cardiac-CT is able to provide Left and Right Ventricular function. β€’ Cardiac-CT is accurate as MR for LV and RV volume assessment. β€’ Cardiac-CT can provide accurate evaluation of coronary arteries and LV and RV function

    Valvular heart disease: what does cardiovascular MRI add?

    Get PDF
    Although ischemic heart disease remains the leading cause of cardiac-related morbidity and mortality in the industrialized countries, a growing number of mainly elderly patients will experience a problem of valvular heart disease (VHD), often requiring surgical intervention at some stage. Doppler-echocardiography is the most popular imaging modality used in the evaluation of this disease entity. It encompasses, however, some non-negligible constraints which may hamper the quality and thus the interpretation of the exam. Cardiac catheterization has been considered for a long time the reference technique in this field, however, this technique is invasive and considered far from optimal. Cardiovascular magnetic resonance imaging (MRI) is already considered an established diagnostic method for studying ventricular dimensions, function and mass. With improvement of MRI soft- and hardware, the assessment of cardiac valve function has also turned out to be fast, accurate and reproducible. This review focuses on the usefulness of MRI in the diagnosis and management of VHD, pointing out its added value in comparison with more conventional diagnostic means

    Contribution of Social Isolation, Restraint, and Hindlimb Unloading to Changes in Hemodynamic Parameters and Motion Activity in Rats

    Get PDF
    The most accepted animal model for simulation of the physiological and morphological consequences of microgravity on the cardiovascular system is one of head-down hindlimb unloading. Experimental conditions surrounding this model include not only head-down tilting of rats, but also social and restraint stresses that have their own influences on cardiovascular system function. Here, we studied levels of spontaneous locomotor activity, blood pressure, and heart rate during 14 days under the following experimental conditions: cage control, social isolation in standard rat housing, social isolation in special cages for hindlimb unloading, horizontal attachment (restraint), and head-down hindlimb unloading. General activity and hemodynamic parameters were continuously monitored in conscious rats by telemetry. Heart rate and blood pressure were both evaluated during treadmill running to reveal cardiovascular deconditioning development as a result of unloading. The main findings of our work are that: social isolation and restraint induced persistent physical inactivity, while unloading in rats resulted in initial inactivity followed by normalization and increased locomotion after one week. Moreover, 14 days of hindlimb unloading showed significant elevation of blood pressure and slight elevation of heart rate. Hemodynamic changes in isolated and restrained rats largely reproduced the trends observed during unloading. Finally, we detected no augmentation of tachycardia during moderate exercise in rats after 14 days of unloading. Thus, we concluded that both social isolation and restraint, as an integral part of the model conditions, contribute essentially to cardiovascular reactions during head-down hindlimb unloading, compared to the little changes in the hydrostatic gradient
    • …
    corecore